module Sound.Frame.NumericPrelude.StereoApplicative (T, left, right, cons, map, ) where
import Sound.Frame.Stereo (T, left, right, cons, map, )
import qualified Algebra.NormedSpace.Maximum as NormedMax
import qualified Algebra.NormedSpace.Euclidean as NormedEuc
import qualified Algebra.NormedSpace.Sum as NormedSum
import qualified Algebra.Module as Module
import qualified Algebra.Algebraic as Algebraic
import qualified Algebra.Additive as Additive
import Control.Applicative (Applicative(pure), liftA2, )
import NumericPrelude.Numeric
import NumericPrelude.Base hiding (map)
import Prelude ()
instance (Additive.C a) => Additive.C (T a) where
zero = pure zero
(+) = liftA2 (+)
() = liftA2 ()
negate = fmap negate
instance (Module.C a v) => Module.C a (T v) where
a*>v = fmap (a*>) v
instance (Additive.C a, NormedSum.C a v) => NormedSum.C a (T v) where
norm = NormedSum.normFoldable1
instance (NormedEuc.Sqr a v) => NormedEuc.Sqr a (T v) where
normSqr = NormedEuc.normSqrFoldable1
instance (Algebraic.C a, NormedEuc.Sqr a v) => NormedEuc.C a (T v) where
norm = NormedEuc.defltNorm
instance (Ord a, NormedMax.C a v) => NormedMax.C a (T v) where
norm = NormedMax.normFoldable1