----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.Uninterpreted.AUF -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- Portability : portable -- -- Formalizes and proves the following theorem, about arithmetic, -- uninterpreted functions, and arrays. (For reference, see -- slide number 24): -- -- @ -- x + 2 = y implies f (read (write (a, x, 3), y - 2)) = f (y - x + 1) -- @ -- -- We interpret the types as follows (other interpretations certainly possible): -- -- [/x/] 'SWord32' (32-bit unsigned address) -- -- [/y/] 'SWord32' (32-bit unsigned address) -- -- [/a/] An array, indexed by 32-bit addresses, returning 32-bit unsigned integers -- -- [/f/] An uninterpreted function of type @'SWord32' -> 'SWord64'@ -- -- The function @read@ and @write@ are usual array operations. ----------------------------------------------------------------------------- module Data.SBV.Examples.Uninterpreted.AUF where import Data.SBV -- | The array type, takes symbolic 32-bit unsigned indexes -- and stores 32-bit unsigned symbolic values type A = SFunArray Word32 Word32 -- | Uninterpreted function in the theorem f :: SWord32 -> SWord64 f = uninterpret "f" -- | Correctness theorem. We state it for all values of @x@, @y@, and -- the array @a@. We also take an arbitrary initializer for the array. thm :: SWord32 -> SWord32 -> A -> SWord32 -> SBool thm x y a initVal = lhs ==> rhs where a' = resetArray a initVal -- initialize array lhs = x + 2 .== y rhs = f (readArray (writeArray a' x 3) (y - 2)) .== f (y - x + 1) -- | Prints Q.E.D. when run, as expected proveThm :: IO () proveThm = print =<< prove thm