----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Core.Data -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Internal data-structures for the sbv library ----------------------------------------------------------------------------- {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -Wall -Werror -Wno-orphans #-} module Data.SBV.Core.Data ( SBool, SWord8, SWord16, SWord32, SWord64 , SInt8, SInt16, SInt32, SInt64, SInteger, SReal, SFloat, SDouble , SFloatingPoint, SFPHalf, SFPBFloat, SFPSingle, SFPDouble, SFPQuad , SWord, SInt, WordN, IntN , SRational , SChar, SString, SList , SArray, ArrayModel(..) , STuple, STuple2, STuple3, STuple4, STuple5, STuple6, STuple7, STuple8 , RCSet(..), SSet , nan, infinity, sNaN, sInfinity, RoundingMode(..), SRoundingMode , SymVal(..) , CV(..), CVal(..), AlgReal(..), AlgRealPoly(..), ExtCV(..), GeneralizedCV(..), isRegularCV, cvSameType, cvToBool , mkConstCV , mapCV, mapCV2 , SV(..), trueSV, falseSV, trueCV, falseCV, normCV , SVal(..) , sTrue, sFalse, sNot, (.&&), (.||), (.<+>), (.~&), (.~|), (.=>), (.<=>), sAnd, sOr, sAny, sAll, fromBool , SBV(..), NodeId(..), mkSymSBV , sbvToSV, sbvToSymSV, forceSVArg , SBVExpr(..), newExpr , cache, Cached, uncache, HasKind(..) , Op(..), PBOp(..), FPOp(..), StrOp(..), RegExOp(..), SeqOp(..), RegExp(..), NamedSymVar(..), OvOp(..), getTableIndex , SBVPgm(..), Symbolic, runSymbolic, State, SInfo(..), getSInfo, getPathCondition, extendPathCondition , inSMTMode, SBVRunMode(..), Kind(..), Outputtable(..), Result(..) , SolverContext(..), internalConstraint, isCodeGenMode , SBVType(..), newUninterpreted , Quantifier(..), needsExistentials , SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension , SolverCapabilities(..) , extractSymbolicSimulationState , SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..), TPOptions(..) , OptimizeStyle(..), Penalty(..), Objective(..) , QueryState(..), QueryT(..), SMTProblem(..), Constraint(..), Lambda(..), Forall(..), Exists(..), ExistsUnique(..), ForallN(..), ExistsN(..) , QuantifiedBool(..), EqSymbolic(..), QNot(..), Skolemize(SkolemsTo, skolemize, taggedSkolemize) , bvExtract, (#), bvDrop, bvTake , registerType ) where import GHC.TypeLits (KnownNat, Nat, Symbol, KnownSymbol, symbolVal, AppendSymbol, type (+), type (-), type (<=), natVal) import Control.DeepSeq (NFData(..)) import Control.Monad (void, replicateM) import Control.Monad.Trans (liftIO, MonadIO) import Data.Int (Int8, Int16, Int32, Int64) import Data.Word (Word8, Word16, Word32, Word64) import Data.Kind (Type) import Data.Proxy import Data.Typeable (Typeable) import Data.IORef import qualified Data.Set as Set (toList) import GHC.Generics (Generic, U1(..), M1(..), (:*:)(..), K1(..), (:+:)(..)) import qualified GHC.Generics as G import System.Random import Data.SBV.Core.AlgReals import Data.SBV.Core.Sized import Data.SBV.Core.SizedFloats import Data.SBV.Core.Kind import Data.SBV.Core.Concrete import Data.SBV.Core.Symbolic import Data.SBV.Core.Operations import Data.SBV.Control.Types import Data.SBV.Utils.Lib import Data.SBV.Utils.Numeric (RoundingMode(..)) import Test.QuickCheck (Arbitrary(..)) -- | Get the current path condition getPathCondition :: State -> SBool getPathCondition st = SBV (getSValPathCondition st) -- | Extend the path condition with the given test value. extendPathCondition :: State -> (SBool -> SBool) -> State extendPathCondition st f = extendSValPathCondition st (unSBV . f . SBV) -- | The "Symbolic" value. The parameter @a@ is phantom, but is -- extremely important in keeping the user interface strongly typed. newtype SBV a = SBV { unSBV :: SVal } deriving (Generic, NFData) -- | A symbolic boolean/bit type SBool = SBV Bool -- | 8-bit unsigned symbolic value type SWord8 = SBV Word8 -- | 16-bit unsigned symbolic value type SWord16 = SBV Word16 -- | 32-bit unsigned symbolic value type SWord32 = SBV Word32 -- | 64-bit unsigned symbolic value type SWord64 = SBV Word64 -- | 8-bit signed symbolic value, 2's complement representation type SInt8 = SBV Int8 -- | 16-bit signed symbolic value, 2's complement representation type SInt16 = SBV Int16 -- | 32-bit signed symbolic value, 2's complement representation type SInt32 = SBV Int32 -- | 64-bit signed symbolic value, 2's complement representation type SInt64 = SBV Int64 -- | Infinite precision signed symbolic value type SInteger = SBV Integer -- | Infinite precision symbolic algebraic real value type SReal = SBV AlgReal -- | IEEE-754 single-precision floating point numbers type SFloat = SBV Float -- | IEEE-754 double-precision floating point numbers type SDouble = SBV Double -- | A symbolic arbitrary precision floating point value type SFloatingPoint (eb :: Nat) (sb :: Nat) = SBV (FloatingPoint eb sb) -- | A symbolic half-precision float type SFPHalf = SBV FPHalf -- | A symbolic brain-float precision float type SFPBFloat = SBV FPBFloat -- | A symbolic single-precision float type SFPSingle = SBV FPSingle -- | A symbolic double-precision float type SFPDouble = SBV FPDouble -- | A symbolic quad-precision float type SFPQuad = SBV FPQuad -- | A symbolic unsigned bit-vector carrying its size info type SWord (n :: Nat) = SBV (WordN n) -- | A symbolic signed bit-vector carrying its size info type SInt (n :: Nat) = SBV (IntN n) -- | A symbolic character. Note that this is the full unicode character set. -- see: -- for details. type SChar = SBV Char -- | A symbolic string. Note that a symbolic string is /not/ a list of symbolic characters, -- that is, it is not the case that @SString = [SChar]@, unlike what one might expect following -- Haskell strings. An 'SString' is a symbolic value of its own, of possibly arbitrary but finite length, -- and internally processed as one unit as opposed to a fixed-length list of characters. type SString = SBV String -- | A symbolic rational value. type SRational = SBV Rational -- | A symbolic list of items. Note that a symbolic list is /not/ a list of symbolic items, -- that is, it is not the case that @SList a = [a]@, unlike what one might expect following -- haskell lists\/sequences. An 'SList' is a symbolic value of its own, of possibly arbitrary but finite -- length, and internally processed as one unit as opposed to a fixed-length list of items. -- Note that lists can be nested, i.e., we do allow lists of lists of ... items. type SList a = SBV [a] -- | Symbolic arrays. A symbolic array is more akin to a function in SMTLib (and thus in SBV), -- as opposed to contagious-storage with a finite range as found in many programming languages. -- Additionally, the domain uses object-equality in the SMTLib semantics. Object equality is -- the same as regular equality for most types, except for IEEE-Floats, where @NaN@ doesn't compare -- equal to itself and @+0@ and @-0@ are not distinguished. So, if your index type is a float, -- then @NaN@ can be stored correctly, and @0@ and @-0@ will be distinguished. If you don't use -- floats, then you can treat this the same as regular equality in Haskell. type SArray a b = SBV (ArrayModel a b) -- | Symbolic 'Data.Set'. Note that we use 'RCSet', which supports -- both regular sets and complements, i.e., those obtained from the -- universal set (of the right type) by removing elements. Similar to 'SArray' -- the contents are stored with object equality, which makes a difference if the -- underlying type contains IEEE Floats. type SSet a = SBV (RCSet a) -- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent. type STuple a b = SBV (a, b) -- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent. type STuple2 a b = SBV (a, b) -- | Symbolic 3-tuple. type STuple3 a b c = SBV (a, b, c) -- | Symbolic 4-tuple. type STuple4 a b c d = SBV (a, b, c, d) -- | Symbolic 5-tuple. type STuple5 a b c d e = SBV (a, b, c, d, e) -- | Symbolic 6-tuple. type STuple6 a b c d e f = SBV (a, b, c, d, e, f) -- | Symbolic 7-tuple. type STuple7 a b c d e f g = SBV (a, b, c, d, e, f, g) -- | Symbolic 8-tuple. type STuple8 a b c d e f g h = SBV (a, b, c, d, e, f, g, h) -- | Not-A-Number for 'Double' and 'Float'. Surprisingly, Haskell -- Prelude doesn't have this value defined, so we provide it here. nan :: Floating a => a nan = 0/0 -- | Infinity for 'Double' and 'Float'. Surprisingly, Haskell -- Prelude doesn't have this value defined, so we provide it here. infinity :: Floating a => a infinity = 1/0 -- | Symbolic variant of Not-A-Number. This value will inhabit -- 'SFloat', 'SDouble' and 'SFloatingPoint'. types. sNaN :: (Floating a, SymVal a) => SBV a sNaN = literal nan -- | Symbolic variant of infinity. This value will inhabit both -- 'SFloat', 'SDouble' and 'SFloatingPoint'. types. sInfinity :: (Floating a, SymVal a) => SBV a sInfinity = literal infinity -- | Internal representation of a symbolic simulation result newtype SMTProblem = SMTProblem {smtLibPgm :: SMTConfig -> SMTLibPgm} -- ^ SMTLib representation, given the config -- | Symbolic 'True' sTrue :: SBool sTrue = SBV (svBool True) -- | Symbolic 'False' sFalse :: SBool sFalse = SBV (svBool False) -- | Symbolic boolean negation sNot :: SBool -> SBool sNot (SBV b) = SBV (svNot b) -- | Symbolic conjunction infixr 3 .&& (.&&) :: SBool -> SBool -> SBool SBV x .&& SBV y = SBV (x `svAnd` y) -- | Symbolic disjunction infixr 2 .|| (.||) :: SBool -> SBool -> SBool SBV x .|| SBV y = SBV (x `svOr` y) -- | Symbolic logical xor infixl 6 .<+> (.<+>) :: SBool -> SBool -> SBool SBV x .<+> SBV y = SBV (x `svXOr` y) -- | Symbolic nand infixr 3 .~& (.~&) :: SBool -> SBool -> SBool x .~& y = sNot (x .&& y) -- | Symbolic nor infixr 2 .~| (.~|) :: SBool -> SBool -> SBool x .~| y = sNot (x .|| y) -- | Symbolic implication infixr 1 .=> (.=>) :: SBool -> SBool -> SBool SBV x .=> SBV y = SBV (x `svImplies` y) -- NB. Do *not* try to optimize @x .=> x = True@ here! If constants go through, it'll get simplified. -- The case "x .=> x" can hit is extremely rare, and the getAllSatResult function relies on this -- trick to generate constraints in the unlucky case of ui-function models. -- | Symbolic boolean equivalence infixr 1 .<=> (.<=>) :: SBool -> SBool -> SBool SBV x .<=> SBV y = SBV (x `svEqual` y) -- | Conversion from 'Bool' to 'SBool' fromBool :: Bool -> SBool fromBool True = sTrue fromBool False = sFalse -- | Generalization of 'and' sAnd :: [SBool] -> SBool sAnd = foldr (.&&) sTrue -- | Generalization of 'or' sOr :: [SBool] -> SBool sOr = foldr (.||) sFalse -- | Generalization of 'any' sAny :: (a -> SBool) -> [a] -> SBool sAny f = sOr . map f -- | Generalization of 'all' sAll :: (a -> SBool) -> [a] -> SBool sAll f = sAnd . map f -- | The symbolic variant of 'RoundingMode' type SRoundingMode = SBV RoundingMode -- | A 'Show' instance is not particularly "desirable," when the value is symbolic, -- but we do need this instance as otherwise we cannot simply evaluate Haskell functions -- that return symbolic values and have their constant values printed easily! instance Show (SBV a) where show (SBV sv) = show sv instance HasKind a => HasKind (SBV a) where kindOf _ = kindOf (Proxy @a) -- | Convert a symbolic value to a symbolic-word sbvToSV :: State -> SBV a -> IO SV sbvToSV st (SBV s) = svToSV st s ------------------------------------------------------------------------- -- * Symbolic Computations ------------------------------------------------------------------------- -- | Generalization of 'Data.SBV.mkSymSBV' mkSymSBV :: forall a m. MonadSymbolic m => VarContext -> Kind -> Maybe String -> m (SBV a) mkSymSBV vc k mbNm = SBV <$> (symbolicEnv >>= liftIO . svMkSymVar vc k mbNm) -- | Generalization of 'Data.SBV.sbvToSymSW' sbvToSymSV :: MonadSymbolic m => SBV a -> m SV sbvToSymSV sbv = do st <- symbolicEnv liftIO $ sbvToSV st sbv -- | Values that we can turn into a constraint class MonadSymbolic m => Constraint m a where mkConstraint :: State -> a -> m () -- | Base case: simple booleans instance MonadSymbolic m => Constraint m SBool where mkConstraint _ out = void $ output out -- | An existential symbolic variable, used in building quantified constraints. The name -- attached via the symbol is used during skolemization to create a skolem-function name -- when this variable is eliminated. newtype Exists (nm :: Symbol) a = Exists (SBV a) -- | An existential unique symbolic variable, used in building quantified constraints. The name -- attached via the symbol is used during skolemization. It's split into two extra names, suffixed -- @_eu1@ and @_eu2@, to name the universals in the equivalent formula: -- \(\exists! x\,P(x)\Leftrightarrow \exists x\,P(x) \land \forall x_{eu1} \forall x_{eu2} (P(x_{eu1}) \land P(x_{eu2}) \Rightarrow x_{eu1} = x_{eu2}) \) newtype ExistsUnique (nm :: Symbol) a = ExistsUnique (SBV a) -- | A universal symbolic variable, used in building quantified constraints. The name attached via the symbol is used -- during skolemization. It names the corresponding argument to the skolem-functions within the scope of this quantifier. newtype Forall (nm :: Symbol) a = Forall (SBV a) -- | Exactly @n@ existential symbolic variables, used in building quantified constraints. The name attached -- will be prefixed in front of @_1@, @_2@, ..., @_n@ to form the names of the variables. newtype ExistsN (n :: Nat) (nm :: Symbol) a = ExistsN [SBV a] -- | Exactly @n@ universal symbolic variables, used in building quantified constraints. The name attached -- will be prefixed in front of @_1@, @_2@, ..., @_n@ to form the names of the variables. newtype ForallN (n :: Nat) (nm :: Symbol) a = ForallN [SBV a] -- | make a quantifier argument in the given state mkQArg :: forall m a. (HasKind a, MonadIO m) => State -> Quantifier -> m (SBV a) mkQArg st q = do let k = kindOf (Proxy @a) sv <- liftIO $ quantVar q st k pure $ SBV $ SVal k (Right (cache (const (return sv)))) -- | Functions of a single existential instance (SymVal a, Constraint m r) => Constraint m (Exists nm a -> r) where mkConstraint st fn = mkQArg st EX >>= mkConstraint st . fn . Exists -- | Functions of a unique single existential instance (SymVal a, Constraint m r, EqSymbolic (SBV a), QuantifiedBool r) => Constraint m (ExistsUnique nm a -> r) where mkConstraint st = mkConstraint st . rewriteExistsUnique -- | Functions of a number of existentials instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ExistsN n nm a -> r) where mkConstraint st fn = replicateM (intOfProxy (Proxy @n)) (mkQArg st EX) >>= mkConstraint st . fn . ExistsN -- | Functions of a single universal instance (SymVal a, Constraint m r) => Constraint m (Forall nm a -> r) where mkConstraint st fn = mkQArg st ALL >>= mkConstraint st . fn . Forall -- | Functions of a number of universals instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ForallN n nm a -> r) where mkConstraint st fn = replicateM (intOfProxy (Proxy @n)) (mkQArg st ALL) >>= mkConstraint st . fn . ForallN -- | Functions of a pair of universals instance (SymVal a, SymVal b, Constraint m r) => Constraint m ((Forall na a, Forall nb b) -> r) where mkConstraint st fn = do a <- mkQArg st ALL b <- mkQArg st ALL mkConstraint st $ fn (Forall a, Forall b) -- | Values that we can turn into a lambda abstraction class MonadSymbolic m => Lambda m a where mkLambda :: State -> a -> m () -- | Base case, simple values instance MonadSymbolic m => Lambda m (SBV a) where mkLambda _ out = void $ output out -- | Functions instance (SymVal a, Lambda m r) => Lambda m (SBV a -> r) where mkLambda st fn = mkArg >>= mkLambda st . fn where mkArg = do let k = kindOf (Proxy @a) sv <- liftIO $ lambdaVar st k pure $ SBV $ SVal k (Right (cache (const (return sv)))) -- | A value that can be used as a quantified boolean class QuantifiedBool a where -- | Turn a quantified boolean into a regular boolean. That is, this function turns an exists/forall quantified -- formula to a simple boolean that can be used as a regular boolean value. An example is: -- -- @ -- quantifiedBool $ \\(Forall x) (Exists y) -> y .> (x :: SInteger) -- @ -- -- is equivalent to `sTrue`. You can think of this function as performing quantifier-elimination: It takes -- a quantified formula, and reduces it to a simple boolean that is equivalent to it, but has no quantifiers. quantifiedBool :: a -> SBool -- | Base case of quantification, simple booleans instance {-# OVERLAPPING #-} QuantifiedBool SBool where quantifiedBool = id -- | Actions we can do in a context: Either at problem description -- time or while we are dynamically querying. 'Symbolic' and 'Query' are -- two instances of this class. Note that we use this mechanism -- internally and do not export it from SBV. class SolverContext m where -- | Add a constraint, any satisfying instance must satisfy this condition. constrain :: QuantifiedBool a => a -> m () -- | Add a soft constraint. The solver will try to satisfy this condition if possible, but won't if it cannot. softConstrain :: QuantifiedBool a => a -> m () -- | Add a named constraint. The name is used in unsat-core extraction. namedConstraint :: QuantifiedBool a => String -> a -> m () -- | Add a constraint, with arbitrary attributes. constrainWithAttribute :: QuantifiedBool a => [(String, String)] -> a -> m () -- | Set info. Example: @setInfo ":status" ["unsat"]@. setInfo :: String -> [String] -> m () -- | Set an option. setOption :: SMTOption -> m () -- | Set the logic. setLogic :: Logic -> m () -- | Set a solver time-out value, in milli-seconds. This function -- essentially translates to the SMTLib call @(set-info :timeout val)@, -- and your backend solver may or may not support it! The amount given -- is in milliseconds. Also see the function 'Data.SBV.Control.timeOut' for finer level -- control of time-outs, directly from SBV. setTimeOut :: Integer -> m () -- | Get the state associated with this context contextState :: m State -- | Get an internal-variable internalVariable :: Kind -> m (SBV a) {-# MINIMAL constrain, softConstrain, namedConstraint, constrainWithAttribute, setOption, contextState, internalVariable #-} -- time-out, logic, and info are simply options in our implementation, so default implementation suffices setTimeOut = setOption . SetTimeOut setLogic = setOption . SetLogic setInfo k = setOption . SetInfo k -- | Register a type with the solver. Like 'Data.SBV.Core.Model.registerFunction', This is typically not necessary -- since SBV will register types as it encounters them automatically. But there are cases -- where doing this can explicitly can come handy, typically in query contexts. registerType :: forall a m. (MonadIO m, SolverContext m, HasKind a) => Proxy a -> m () registerType _ = do st <- contextState liftIO $ registerKind st (kindOf (Proxy @a)) -- | Various info we use in recoverKinded value newtype SInfo = SInfo { sInfoKinds :: [Kind] } -- | Turn state into SInfo getSInfo :: MonadIO m => State -> m SInfo getSInfo st = do rk <- liftIO $ readIORef (rUsedKinds st) pure $ SInfo { sInfoKinds = Set.toList rk } -- | A class representing what can be returned from a symbolic computation. class Outputtable a where -- | Generalization of 'Data.SBV.output' output :: MonadSymbolic m => a -> m a instance Outputtable (SBV a) where output i = do outputSVal (unSBV i) return i instance Outputtable a => Outputtable [a] where output = mapM output instance Outputtable () where output = return instance (Outputtable a, Outputtable b) => Outputtable (a, b) where output = mlift2 (,) output output instance (Outputtable a, Outputtable b, Outputtable c) => Outputtable (a, b, c) where output = mlift3 (,,) output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d) => Outputtable (a, b, c, d) where output = mlift4 (,,,) output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e) => Outputtable (a, b, c, d, e) where output = mlift5 (,,,,) output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f) => Outputtable (a, b, c, d, e, f) where output = mlift6 (,,,,,) output output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g) => Outputtable (a, b, c, d, e, f, g) where output = mlift7 (,,,,,,) output output output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g, Outputtable h) => Outputtable (a, b, c, d, e, f, g, h) where output = mlift8 (,,,,,,,) output output output output output output output output ------------------------------------------------------------------------------- -- * Symbolic Values ------------------------------------------------------------------------------- -- | A 'SymVal' is a potential symbolic value that can be created instances of to be fed to a symbolic program. class (HasKind a, Typeable a, Arbitrary a) => SymVal a where -- | Generalization of 'Data.SBV.mkSymVal' mkSymVal :: MonadSymbolic m => VarContext -> Maybe String -> m (SBV a) -- | Certain types (ADTs) might need to do further initialization. mkSymValInit :: State -> SBV a -> IO () mkSymValInit _ _ = pure () -- | Turn a literal constant to symbolic literal :: a -> SBV a -- | Extract a literal, from a CV representation fromCV :: CV -> a -- | Does it concretely satisfy the given predicate? isConcretely :: SBV a -> (a -> Bool) -> Bool -- | If bounded, what's the min/max value for this type? -- If the underlying type is bounded, we have a default below. Otherwise it's nothing. minMaxBound :: Maybe (a, a) {-# MINIMAL literal, fromCV #-} default mkSymVal :: MonadSymbolic m => VarContext -> Maybe String -> m (SBV a) mkSymVal vc mbNm = do st <- symbolicEnv liftIO $ do v <- SBV <$> svMkSymVar vc (kindOf (undefined :: a)) mbNm st mkSymValInit st v pure v default minMaxBound :: Bounded a => Maybe (a, a) minMaxBound = Just (minBound, maxBound) isConcretely s p | Just i <- unliteral s = p i | True = False -- | Generalization of 'Data.SBV.free' free :: MonadSymbolic m => String -> m (SBV a) free = mkSymVal (NonQueryVar Nothing) . Just -- | Generalization of 'Data.SBV.free_' free_ :: MonadSymbolic m => m (SBV a) free_ = mkSymVal (NonQueryVar Nothing) Nothing -- | Generalization of 'Data.SBV.mkFreeVars' mkFreeVars :: MonadSymbolic m => Int -> m [SBV a] mkFreeVars n = mapM (const free_) [1 .. n] -- | Generalization of 'Data.SBV.symbolic' symbolic :: MonadSymbolic m => String -> m (SBV a) symbolic = free -- | Generalization of 'Data.SBV.symbolics' symbolics :: MonadSymbolic m => [String] -> m [SBV a] symbolics = mapM symbolic -- | Extract a literal, if the value is concrete unliteral :: SBV a -> Maybe a unliteral (SBV (SVal _ (Left c))) = Just $ fromCV c unliteral _ = Nothing -- | Get the underlying CV, if available unlitCV :: SBV a -> Maybe (Kind, CVal) unlitCV (SBV (SVal _ (Left (CV k v)))) = Just (k, v) unlitCV _ = Nothing -- | Is the symbolic word concrete? isConcrete :: SBV a -> Bool isConcrete (SBV (SVal _ (Left _))) = True isConcrete _ = False -- | Is the symbolic word really symbolic? isSymbolic :: SBV a -> Bool isSymbolic = not . isConcrete instance (Random a, SymVal a) => Random (SBV a) where randomR (l, h) g = case (unliteral l, unliteral h) of (Just lb, Just hb) -> let (v, g') = randomR (lb, hb) g in (literal (v :: a), g') _ -> error "SBV.Random: Cannot generate random values with symbolic bounds" random g = let (v, g') = random g in (literal (v :: a) , g') -- | Symbolic Equality. Note that we can't use Haskell's 'Eq' class since Haskell insists on returning Bool -- Comparing symbolic values will necessarily return a symbolic value. -- -- NB. Equality is a built-in notion in SMTLib, and is object-equality. While this mostly matches Haskell's -- notion of equality, the correspondence isn't exact. This mostly shows up in containers with floats inside, -- such as sequences of floats, sets of doubles, and arrays of doubles. While SBV tries to maintain Haskell -- semantics, it does resort to container equality for compound types. For instance, for an IEEE-float, -- -0 == 0. But for an SMTLib sequence, equals is done over objects. i.e., @[0] == [-0]@ in Haskell, but -- @literal [0] ./= literal [-0]@ when used as SMTLib sequences. The rabbit-hole goes deep here, especially -- when @NaN@ is involved, which does not compare equal to itself per IEEE-semantics. -- -- If you are not using floats, then you can ignore all this. If you do, then SBV will do the right thing for -- them when checking equality directly, but not when you use containers with floating-point elements. In the -- latter case, object-equality will be used. -- -- Minimal complete definition: None, if the type is instance of @Generic@. Otherwise '(.==)'. infix 4 .==, ./=, .===, ./== class EqSymbolic a where -- | Symbolic equality. (.==) :: a -> a -> SBool -- | Symbolic inequality. (./=) :: a -> a -> SBool -- | Strong equality. On floats ('SFloat'/'SDouble'), strong equality is object equality; that -- is @NaN == NaN@ holds, but @+0 == -0@ doesn't. On other types, (.===) is simply (.==). -- Note that (.==) is the /right/ notion of equality for floats per IEEE754 specs, since by -- definition @+0 == -0@ and @NaN@ equals no other value including itself. But occasionally -- we want to be stronger and state @NaN@ equals @NaN@ and @+0@ and @-0@ are different from -- each other. In a context where your type is concrete, simply use `Data.SBV.fpIsEqualObject`. But in -- a polymorphic context, use the strong equality instead. -- -- NB. If you do not care about or work with floats, simply use (.==) and (./=). (.===) :: a -> a -> SBool -- | Negation of strong equality. Equaivalent to negation of (.===) on all types. (./==) :: a -> a -> SBool -- | Returns (symbolic) 'sTrue' if all the elements of the given list are different. distinct :: [a] -> SBool -- | Returns (symbolic) `sTrue` if all the elements of the given list are different. The second -- list contains exceptions, i.e., if an element belongs to that set, it will be considered -- distinct regardless of repetition. distinctExcept :: [a] -> [a] -> SBool -- | Returns (symbolic) 'sTrue' if all the elements of the given list are the same. allEqual :: [a] -> SBool -- | Symbolic membership test. sElem :: a -> [a] -> SBool -- | Symbolic negated membership test. sNotElem :: a -> [a] -> SBool x ./= y = sNot (x .== y) x .=== y = x .== y x ./== y = sNot (x .=== y) allEqual [] = sTrue allEqual (x:xs) = sAll (x .==) xs -- Default implementation of 'distinct'. Note that we override -- this method for the base types to generate better code. distinct [] = sTrue distinct (x:xs) = sAll (x ./=) xs .&& distinct xs -- Default implementation of 'distinctExcept'. Note that we override -- this method for the base types to generate better code. distinctExcept es ignored = go es where isIgnored = (`sElem` ignored) go [] = sTrue go (x:xs) = let xOK = isIgnored x .|| sAll (\y -> isIgnored y .|| x ./= y) xs in xOK .&& go xs x `sElem` xs = sAny (.== x) xs x `sNotElem` xs = sNot (x `sElem` xs) -- Default implementation for '(.==)' if the type is 'Generic' default (.==) :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool (.==) = symbolicEqDefault -- | Default implementation of symbolic equality, when the underlying type is generic -- Not exported, used with automatic deriving. symbolicEqDefault :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool symbolicEqDefault x y = symbolicEq (G.from x) (G.from y) -- | Not exported, used for implementing generic equality. class GEqSymbolic f where symbolicEq :: f a -> f a -> SBool {- - N.B. A V1 instance like the below would be wrong! - Why? Because in SBV, we use empty data to mean "uninterpreted" sort; not - something that has no constructors. Perhaps that was a bad design - decision. So, do not allow equality checking of such values. instance GEqSymbolic V1 where symbolicEq _ _ = sTrue -} instance GEqSymbolic U1 where symbolicEq _ _ = sTrue instance (EqSymbolic c) => GEqSymbolic (K1 i c) where symbolicEq (K1 x) (K1 y) = x .== y instance (GEqSymbolic f) => GEqSymbolic (M1 i c f) where symbolicEq (M1 x) (M1 y) = symbolicEq x y instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :*: g) where symbolicEq (x1 :*: y1) (x2 :*: y2) = symbolicEq x1 x2 .&& symbolicEq y1 y2 instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :+: g) where symbolicEq (L1 l) (L1 r) = symbolicEq l r symbolicEq (R1 l) (R1 r) = symbolicEq l r symbolicEq (L1 _) (R1 _) = sFalse symbolicEq (R1 _) (L1 _) = sFalse -- We don't want to do a generic Num a => Num (SBV a) instance; since that would be dangerous. Liftings -- would only work for types we already handle. If a user defines his own type and makes an instance -- of it, it would do the wrong thing. See https://github.com/LeventErkok/sbv/issues/706 for a discussion. -- So, we have to declare the instances individually. I played around doing this via iso-deriving and -- other generic mechanisms, but failed to do so. The CPP solution here is crude, but it avoids the -- code duplication. #define MKSNUM(CSTR, TYPE, KIND) \ instance CSTR => Num TYPE where { \ fromInteger i = SBV $ SVal KIND $ Left $ mkConstCV KIND (fromIntegral i :: Integer); \ SBV a + SBV b = SBV $ a `svPlus` b; \ SBV a * SBV b = SBV $ a `svTimes` b; \ SBV a - SBV b = SBV $ a `svMinus` b; \ abs (SBV a) = SBV $ svAbs a; \ signum (SBV a) = SBV $ svSignum a; \ negate (SBV a) = SBV $ svUNeg a; \ } -- Derive basic instances we need. NB. We don't give the SRational instance here. It's handled -- in Data/SBV/Rational due to representation issues. MKSNUM((), SInteger, KUnbounded) MKSNUM((), SWord8, (KBounded False 8)) MKSNUM((), SWord16, (KBounded False 16)) MKSNUM((), SWord32, (KBounded False 32)) MKSNUM((), SWord64, (KBounded False 64)) MKSNUM((), SInt8, (KBounded True 8)) MKSNUM((), SInt16, (KBounded True 16)) MKSNUM((), SInt32, (KBounded True 32)) MKSNUM((), SInt64, (KBounded True 64)) MKSNUM((), SFloat, KFloat) MKSNUM((), SDouble, KDouble) MKSNUM((), SReal, KReal) MKSNUM((KnownNat n), (SWord n), (KBounded False (intOfProxy (Proxy @n)))) MKSNUM((KnownNat n), (SInt n), (KBounded True (intOfProxy (Proxy @n)))) MKSNUM((ValidFloat eb sb), (SFloatingPoint eb sb), (KFP (intOfProxy (Proxy @eb)) (intOfProxy (Proxy @sb)))) #undef MKSNUM -- | Extract a portion of bits to form a smaller bit-vector. bvExtract :: forall i j n bv proxy. ( KnownNat n, BVIsNonZero n, SymVal (bv n) , KnownNat i , KnownNat j , i + 1 <= n , j <= i , BVIsNonZero (i - j + 1) ) => proxy i -- ^ @i@: Start position, numbered from @n-1@ to @0@ -> proxy j -- ^ @j@: End position, numbered from @n-1@ to @0@, @j <= i@ must hold -> SBV (bv n) -- ^ Input bit vector of size @n@ -> SBV (bv (i - j + 1)) -- ^ Output is of size @i - j + 1@ bvExtract start end = SBV . svExtract i j . unSBV where i = fromIntegral (natVal start) j = fromIntegral (natVal end) -- | Join two bit-vectors. (#) :: ( KnownNat n, BVIsNonZero n, SymVal (bv n) , KnownNat m, BVIsNonZero m, SymVal (bv m) ) => SBV (bv n) -- ^ First input, of size @n@, becomes the left side -> SBV (bv m) -- ^ Second input, of size @m@, becomes the right side -> SBV (bv (n + m)) -- ^ Concatenation, of size @n+m@ n # m = SBV $ svJoin (unSBV n) (unSBV m) infixr 5 # -- | Drop bits from the top of a bit-vector. bvDrop :: forall i n m bv proxy. ( KnownNat n, BVIsNonZero n , KnownNat i , i + 1 <= n , i + m - n <= 0 , BVIsNonZero (n - i) ) => proxy i -- ^ @i@: Number of bits to drop. @i < n@ must hold. -> SBV (bv n) -- ^ Input, of size @n@ -> SBV (bv m) -- ^ Output, of size @m@. @m = n - i@ holds. bvDrop i = SBV . svExtract start 0 . unSBV where nv = intOfProxy (Proxy @n) start = nv - fromIntegral (natVal i) - 1 -- | Take bits from the top of a bit-vector. bvTake :: forall i n bv proxy. ( KnownNat n, BVIsNonZero n , KnownNat i, BVIsNonZero i , i <= n ) => proxy i -- ^ @i@: Number of bits to take. @0 < i <= n@ must hold. -> SBV (bv n) -- ^ Input, of size @n@ -> SBV (bv i) -- ^ Output, of size @i@ bvTake i = SBV . svExtract start end . unSBV where nv = intOfProxy (Proxy @n) start = nv - 1 end = start - fromIntegral (natVal i) + 1 -- | A class of values that can be skolemized. Note that we don't export this class. Use -- the 'skolemize' function instead. class Skolemize a where type SkolemsTo a :: Type skolem :: String -> [(SVal, String)] -> a -> SkolemsTo a -- | Skolemization. For any formula, skolemization gives back an equisatisfiable formula that -- has no existential quantifiers in it. You have to provide enough names for all the -- existentials in the argument. (Extras OK, so you can pass an infinite list if you like.) -- The names should be distinct, and also different from any other uninterpreted name -- you might have elsewhere. skolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => a -> SkolemsTo a skolemize = skolem "" [] -- | If you use the same names for skolemized arguments in different functions, they will -- collide; which is undesirable. Unfortunately there's no easy way for SBV to detect this. -- In such cases, use 'taggedSkolemize' to add a scope to the skolem-function names generated. taggedSkolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => String -> a -> SkolemsTo a taggedSkolemize scope = skolem (scope ++ "_") [] -- | Base case; pure symbolic values instance Skolemize (SBV a) where type SkolemsTo (SBV a) = SBV a skolem _ _ = id -- | Skolemize over a universal quantifier instance (KnownSymbol nm, Skolemize r) => Skolemize (Forall nm a -> r) where type SkolemsTo (Forall nm a -> r) = Forall nm a -> SkolemsTo r skolem scope args f arg@(Forall a) = skolem scope (args ++ [(unSBV a, symbolVal (Proxy @nm))]) (f arg) -- | Skolemize over a o pair universal quantifier instance (KnownSymbol na, KnownSymbol nb, Skolemize r) => Skolemize ((Forall na a, Forall nb b) -> r) where type SkolemsTo ((Forall na a, Forall nb b) -> r) = (Forall na a, Forall nb b) -> SkolemsTo r skolem scope args f = uncurry (skolem scope args (curry f)) -- | Skolemize over a number of universal quantifiers instance (KnownSymbol nm, Skolemize r) => Skolemize (ForallN n nm a -> r) where type SkolemsTo (ForallN n nm a -> r) = ForallN n nm a -> SkolemsTo r skolem scope args f arg@(ForallN xs) = skolem scope (args ++ zipWith grab xs [(1::Int)..]) (f arg) where pre = symbolVal (Proxy @nm) grab x i = (unSBV x, pre ++ "_" ++ show i) -- | Skolemize over an existential quantifier instance (HasKind a, KnownSymbol nm, Skolemize r) => Skolemize (Exists nm a -> r) where type SkolemsTo (Exists nm a -> r) = SkolemsTo r skolem scope args f = skolem scope args (f (Exists skolemized)) where skolemized = SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (UIGiven (scope ++ symbolVal (Proxy @nm))) (UINone True) args -- | Skolemize over a o pair existential quantifier instance (HasKind a, HasKind b, KnownSymbol na, KnownSymbol nb, Skolemize r) => Skolemize ((Exists na a, Exists nb b) -> r) where type SkolemsTo ((Exists na a, Exists nb b) -> r) = SkolemsTo r skolem scope args = skolem scope args . curry -- | Skolemize over a number of existential quantifiers instance (HasKind a, KnownNat n, KnownSymbol nm, Skolemize r) => Skolemize (ExistsN n nm a -> r) where type SkolemsTo (ExistsN n nm a -> r) = SkolemsTo r skolem scope args f = skolem scope args (f (ExistsN skolemized)) where need = intOfProxy (Proxy @n) prefix = symbolVal (Proxy @nm) fs = [prefix ++ "_" ++ show i | i <- [1 .. need]] skolemized = [SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (UIGiven (scope ++ n)) (UINone True) args | n <- fs] -- | Skolemize over a unique existential quantifier instance ( HasKind a , EqSymbolic (SBV a) , KnownSymbol nm , QuantifiedBool r , Skolemize (Forall (AppendSymbol nm "_eu1") a -> Forall (AppendSymbol nm "_eu2") a -> SBool) ) => Skolemize (ExistsUnique nm a -> r) where type SkolemsTo (ExistsUnique nm a -> r) = Forall (AppendSymbol nm "_eu1") a -> Forall (AppendSymbol nm "_eu2") a -> SBool skolem scope args f = skolem scope args (rewriteExistsUnique f (Exists skolemized)) where skolemized = SBV $ svUninterpretedNamedArgs (kindOf (Proxy @a)) (UIGiven (scope ++ symbolVal (Proxy @nm))) (UINone True) args -- | Class of things that we can logically negate class QNot a where type NegatesTo a :: Type -- | Negation of a quantified formula. This operation essentially lifts 'sNot' to quantified formulae. -- Note that you can achieve the same using @'sNot' . 'quantifiedBool'@, but that will hide the -- quantifiers, so prefer this version if you want to keep them around. qNot :: a -> NegatesTo a -- | Base case; pure symbolic boolean instance QNot SBool where type NegatesTo SBool = SBool qNot = sNot -- | Negate over a universal quantifier. Switches to existential. instance QNot r => QNot (Forall nm a -> r) where type NegatesTo (Forall nm a -> r) = Exists nm a -> NegatesTo r qNot f (Exists a) = qNot (f (Forall a)) -- | Negate over a number of universal quantifiers instance QNot r => QNot (ForallN nm n a -> r) where type NegatesTo (ForallN nm n a -> r) = ExistsN nm n a -> NegatesTo r qNot f (ExistsN xs) = qNot (f (ForallN xs)) -- | Negate over an existential quantifier. Switches to universal. instance QNot r => QNot (Exists nm a -> r) where type NegatesTo (Exists nm a -> r) = Forall nm a -> NegatesTo r qNot f (Forall a) = qNot (f (Exists a)) -- | Negate over a number of existential quantifiers instance QNot r => QNot (ExistsN nm n a -> r) where type NegatesTo (ExistsN nm n a -> r) = ForallN nm n a -> NegatesTo r qNot f (ForallN xs) = qNot (f (ExistsN xs)) -- | Negate over a unique existential quantifier instance (QNot r, QuantifiedBool r, EqSymbolic (SBV a)) => QNot (ExistsUnique nm a -> r) where type NegatesTo (ExistsUnique nm a -> r) = Forall nm a -> Exists (AppendSymbol nm "_eu1") a -> Exists (AppendSymbol nm "_eu2") a -> SBool qNot = qNot . rewriteExistsUnique -- | Negate over a pair of universals instance QNot r => QNot ((Forall na a, Forall nb b) -> r) where type NegatesTo ((Forall na a, Forall nb b) -> r) = (Exists na a, Exists nb b) -> NegatesTo r qNot f (Exists a, Exists b) = qNot (f (Forall a, Forall b)) -- | Negate over a pair of existentials instance QNot r => QNot ((Exists na a, Exists nb b) -> r) where type NegatesTo ((Exists na a, Exists nb b) -> r) = (Forall na a, Forall nb b) -> NegatesTo r qNot f (Forall a, Forall b) = qNot (f (Exists a, Exists b)) -- | Get rid of exists unique. rewriteExistsUnique :: ( QuantifiedBool b -- If b can be turned into a boolean , EqSymbolic (SBV a) -- If we can do equality on symbolic a's ) -- THEN => (ExistsUnique nm a -> b) -- Given an unique-existential, we can -> Exists nm a -- Turn it into an existential -> Forall (AppendSymbol nm "_eu1") a -- A universal -> Forall (AppendSymbol nm "_eu2") a -- Another universal -> SBool -- Making sure given holds, and if both univers hold, they're the same rewriteExistsUnique f (Exists x) (Forall x1) (Forall x2) = fx .&& unique where fx = quantifiedBool $ f (ExistsUnique x) fx1 = f (ExistsUnique x1) fx2 = f (ExistsUnique x2) bothHolds = quantifiedBool fx1 .&& quantifiedBool fx2 mustEqual = x1 .== x2 unique = bothHolds .=> mustEqual