----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.Misc.Floating -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Several examples involving IEEE-754 floating point numbers, i.e., single -- precision 'Float' ('SFloat') and double precision 'Double' ('SDouble') types. -- -- Note that arithmetic with floating point is full of surprises; due to precision -- issues associativity of arithmetic operations typically do not hold. Also, -- the presence of @NaN@ is always something to look out for. ----------------------------------------------------------------------------- module Data.SBV.Examples.Misc.Floating where import Data.SBV ----------------------------------------------------------------------------- -- * FP addition is not associative ----------------------------------------------------------------------------- -- | Prove that floating point addition is not associative. We have: -- -- >>> prove assocPlus -- Falsifiable. Counter-example: -- s0 = -Infinity :: SFloat -- s1 = Infinity :: SFloat -- s2 = -9.403955e-38 :: SFloat -- -- Indeed: -- -- >>> let i = 1/0 :: Float -- >>> ((-i) + i) + (-9.403955e-38) :: Float -- NaN -- >>> (-i) + (i + (-9.403955e-38)) :: Float -- NaN -- -- But keep in mind that @NaN@ does not equal itself in the floating point world! We have: -- -- >>> let nan = 0/0 :: Float in nan == nan -- False assocPlus :: SFloat -> SFloat -> SFloat -> SBool assocPlus x y z = x + (y + z) .== (x + y) + z -- | Prove that addition is not associative, even if we ignore @NaN@/@Infinity@ values. -- To do this, we use the predicate 'isFPPoint', which is true of a floating point -- number ('SFloat' or 'SDouble') if it is neither @NaN@ nor @Infinity@. (That is, it's a -- representable point in the real-number line.) -- -- We have: -- -- >>> assocPlusRegular -- Falsifiable. Counter-example: -- x = 1.5775295e-30 :: SFloat -- y = 1.92593e-34 :: SFloat -- z = -2.1521e-41 :: SFloat -- -- Indeed, we have: -- -- >>> (1.5775295e-30 + 1.92593e-34) + (-2.1521e-41) :: Float -- 1.5777222e-30 -- >>> 1.5775295e-30 + (1.92593e-34 + (-2.1521e-41)) :: Float -- 1.577722e-30 -- -- Note the loss of precision in the second expression. assocPlusRegular :: IO ThmResult assocPlusRegular = prove $ do [x, y, z] <- sFloats ["x", "y", "z"] let lhs = x+(y+z) rhs = (x+y)+z -- make sure we do not overflow at the intermediate points constrain $ isFPPoint lhs constrain $ isFPPoint rhs return $ lhs .== rhs ----------------------------------------------------------------------------- -- * FP addition by non-zero can result in no change ----------------------------------------------------------------------------- -- | Demonstrate that @a+b = a@ does not necessarily mean @b@ is @0@ in the floating point world, -- even when we disallow the obvious solution when @a@ and @b@ are @Infinity.@ -- We have: -- -- >>> nonZeroAddition -- Falsifiable. Counter-example: -- a = -4.0 :: SFloat -- b = 4.5918e-41 :: SFloat -- -- Indeed, we have: -- -- >>> -4.0 + 4.5918e-41 == (-4.0 :: Float) -- True -- -- But: -- -- >>> 4.5918e-41 == (0 :: Float) -- False -- nonZeroAddition :: IO ThmResult nonZeroAddition = prove $ do [a, b] <- sFloats ["a", "b"] constrain $ isFPPoint a constrain $ isFPPoint b constrain $ a + b .== a return $ b .== 0 ----------------------------------------------------------------------------- -- * FP multiplicative inverses may not exist ----------------------------------------------------------------------------- -- | The last example illustrates that @a * (1/a)@ does not necessarily equal @1@. Again, -- we protect against division by @0@ and @NaN@/@Infinity@. -- -- We have: -- -- >>> multInverse -- Falsifiable. Counter-example: -- a = 1.3625818045773776e-308 :: SDouble -- -- Indeed, we have: -- -- >>> let a = 1.3625818045773776e-308 :: Double -- >>> a * (1/a) -- 0.9999999999999999 multInverse :: IO ThmResult multInverse = prove $ do a <- sDouble "a" constrain $ isFPPoint a constrain $ isFPPoint (1/a) return $ a * (1/a) .== 1