----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.Misc.Floating -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Several examples involving IEEE-754 floating point numbers, i.e., single -- precision 'Float' ('SFloat') and double precision 'Double' ('SDouble') types. -- -- Note that arithmetic with floating point is full of surprises; due to precision -- issues associativity of arithmetic operations typically do not hold. Also, -- the presence of @NaN@ is always something to look out for. ----------------------------------------------------------------------------- {-# LANGUAGE ScopedTypeVariables #-} module Data.SBV.Examples.Misc.Floating where import Data.SBV ----------------------------------------------------------------------------- -- * FP addition is not associative ----------------------------------------------------------------------------- -- | Prove that floating point addition is not associative. We have: -- -- >>> prove assocPlus -- Falsifiable. Counter-example: -- s0 = -7.888609e-31 :: SFloat -- s1 = 3.944307e-31 :: SFloat -- s2 = NaN :: SFloat -- -- Indeed: -- -- >>> let i = 0/0 :: Float -- >>> ((-7.888609e-31 + 3.944307e-31) + i) :: Float -- NaN -- >>> (-7.888609e-31 + (3.944307e-31 + i)) :: Float -- NaN -- -- But keep in mind that @NaN@ does not equal itself in the floating point world! We have: -- -- >>> let nan = 0/0 :: Float in nan == nan -- False assocPlus :: SFloat -> SFloat -> SFloat -> SBool assocPlus x y z = x + (y + z) .== (x + y) + z -- | Prove that addition is not associative, even if we ignore @NaN@/@Infinity@ values. -- To do this, we use the predicate 'isFPPoint', which is true of a floating point -- number ('SFloat' or 'SDouble') if it is neither @NaN@ nor @Infinity@. (That is, it's a -- representable point in the real-number line.) -- -- We have: -- -- >>> assocPlusRegular -- Falsifiable. Counter-example: -- x = -3.7777752e22 :: SFloat -- y = -1.180801e18 :: SFloat -- z = 9.4447324e21 :: SFloat -- -- Indeed, we have: -- -- >>> ((-3.7777752e22 + (-1.180801e18)) + 9.4447324e21) :: Float -- -2.83342e22 -- >>> (-3.7777752e22 + ((-1.180801e18) + 9.4447324e21)) :: Float -- -2.8334201e22 -- -- Note the loss of precision in the first expression. assocPlusRegular :: IO ThmResult assocPlusRegular = prove $ do [x, y, z] <- sFloats ["x", "y", "z"] let lhs = x+(y+z) rhs = (x+y)+z -- make sure we do not overflow at the intermediate points constrain $ isFPPoint lhs constrain $ isFPPoint rhs return $ lhs .== rhs ----------------------------------------------------------------------------- -- * FP addition by non-zero can result in no change ----------------------------------------------------------------------------- -- | Demonstrate that @a+b = a@ does not necessarily mean @b@ is @0@ in the floating point world, -- even when we disallow the obvious solution when @a@ and @b@ are @Infinity.@ -- We have: -- -- >>> nonZeroAddition -- Falsifiable. Counter-example: -- a = 2.1474839e10 :: SFloat -- b = -7.275957e-11 :: SFloat -- -- Indeed, we have: -- -- >>> 2.1474839e10 + (-7.275957e-11) == (2.1474839e10 :: Float) -- True -- -- But: -- -- >>> -7.275957e-11 == (0 :: Float) -- False -- nonZeroAddition :: IO ThmResult nonZeroAddition = prove $ do [a, b] <- sFloats ["a", "b"] constrain $ isFPPoint a constrain $ isFPPoint b constrain $ a + b .== a return $ b .== 0 ----------------------------------------------------------------------------- -- * FP multiplicative inverses may not exist ----------------------------------------------------------------------------- -- | This example illustrates that @a * (1/a)@ does not necessarily equal @1@. Again, -- we protect against division by @0@ and @NaN@/@Infinity@. -- -- We have: -- -- >>> multInverse -- Falsifiable. Counter-example: -- a = 1.2354518252390238e308 :: SDouble -- -- Indeed, we have: -- -- >>> let a = 1.2354518252390238e308 :: Double -- >>> a * (1/a) -- 0.9999999999999998 multInverse :: IO ThmResult multInverse = prove $ do a <- sDouble "a" constrain $ isFPPoint a constrain $ isFPPoint (1/a) return $ a * (1/a) .== 1 ----------------------------------------------------------------------------- -- * Effect of rounding modes ----------------------------------------------------------------------------- -- | One interesting aspect of floating-point is that the chosen rounding-mode -- can effect the results of a computation if the exact result cannot be precisely -- represented. SBV exports the functions 'fpAdd', 'fpSub', 'fpMul', 'fpDiv', 'fpFMA' -- and 'fpSqrt' which allows users to specify the IEEE supported 'RoundingMode' for -- the operation. (Also see the class 'RoundingFloat'.) This example illustrates how SBV -- can be used to find rounding-modes where, for instance, addition can produce different -- results. We have: -- -- >>> roundingAdd -- Satisfiable. Model: -- rm = RoundTowardPositive :: RoundingMode -- x = 1.7014118e38 :: SFloat -- y = 1.1754942e-38 :: SFloat -- -- Unfortunately we can't directly validate this result at the Haskell level, as Haskell only supports -- 'RoundNearestTiesToEven'. We have: -- -- >>> (1.7014118e38 + 1.1754942e-38) :: Float -- 1.7014118e38 -- -- Note that result is identical to the first argument. But with a 'RoundTowardPositive', we would -- get the result @1.701412e38@. While we cannot directly see this from within Haskell, we can -- use SBV to provide us with that result thusly: -- -- >>> sat $ \x -> x .== fpAdd (literal RoundTowardPositive) (1.7014118e38::SFloat) (1.1754942e-38::SFloat) -- Satisfiable. Model: -- s0 = 1.701412e38 :: SFloat -- -- We can see why these two resuls are different if we treat these values as arbitrary -- precision reals, as represented by the 'SReal' type: -- -- >>> let x = 1.7014118e38 :: SReal -- >>> let y = 1.1754942e-38 :: SReal -- >>> x -- 170141180000000000000000000000000000000.0 :: SReal -- >>> y -- 0.000000000000000000000000000000000000011754942 :: SReal -- >>> x + y -- 170141180000000000000000000000000000000.000000000000000000000000000000000000011754942 :: SReal -- -- When we do 'RoundNearestTiesToEven', the entire suffix falls off, as it happens that the infinitely -- precise result is closer to the value of @x@. But when we use 'RoundTowardPositive', we reach -- for the next representable number, which happens to be @1.701412e38@. You might wonder why not -- @1.7014119e38@? Because that number is not precisely representable as a 'Float': -- -- >>> 1.7014119e38:: Float -- 1.7014118e38 -- -- But @1.701412e38@ is: -- -- >>> 1.701412e38 :: Float -- 1.701412e38 -- -- Floating point representation and semantics is indeed a thorny subject, happens to be an excellent guide, however. roundingAdd :: IO SatResult roundingAdd = sat $ do m :: SRoundingMode <- free "rm" x <- sFloat "x" y <- sFloat "y" constrain $ m ./= literal RoundNearestTiesToEven return $ fpAdd m x y ./= x + y