----------------------------------------------------------------------------- -- | -- Module : Data.SBV.BitVectors.Symbolic -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Symbolic values ----------------------------------------------------------------------------- {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE DeriveDataTypeable #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Data.SBV.BitVectors.Symbolic ( NodeId(..) , SW(..), swKind, trueSW, falseSW , Op(..), FPOp(..) , Quantifier(..), needsExistentials , RoundingMode(..) , SBVType(..), newUninterpreted, addAxiom , SVal(..) , svMkSymVar , ArrayContext(..), ArrayInfo , svToSW, svToSymSW, forceSWArg , SBVExpr(..), newExpr, isCodeGenMode , Cached, cache, uncache , ArrayIndex, uncacheAI , NamedSymVar , getSValPathCondition, extendSValPathCondition , getTableIndex , SBVPgm(..), Symbolic, runSymbolic, runSymbolic', State , inProofMode, SBVRunMode(..), Result(..) , Logic(..), SMTLibLogic(..) , addAssertion, addSValConstraint, internalConstraint, internalVariable , SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension , SolverCapabilities(..) , extractSymbolicSimulationState , SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..), SMTEngine, getSBranchRunConfig , outputSVal , mkSValUserSort , SArr(..), readSArr, resetSArr, writeSArr, mergeSArr, newSArr, eqSArr ) where import Control.DeepSeq (NFData(..)) import Control.Monad (when, unless) import Control.Monad.Reader (MonadReader, ReaderT, ask, runReaderT) import Control.Monad.Trans (MonadIO, liftIO) import Data.Char (isAlpha, isAlphaNum, toLower) import Data.IORef (IORef, newIORef, modifyIORef, readIORef, writeIORef) import Data.List (intercalate, sortBy) import Data.Maybe (isJust, fromJust, fromMaybe) import GHC.Stack.Compat import qualified Data.Generics as G (Data(..)) import qualified Data.Typeable as T (Typeable) import qualified Data.IntMap as IMap (IntMap, empty, size, toAscList, lookup, insert, insertWith) import qualified Data.Map as Map (Map, empty, toList, size, insert, lookup) import qualified Data.Set as Set (Set, empty, toList, insert) import qualified Data.Foldable as F (toList) import qualified Data.Sequence as S (Seq, empty, (|>)) import System.Mem.StableName import System.Random import Data.SBV.BitVectors.Kind import Data.SBV.BitVectors.Concrete import Data.SBV.SMT.SMTLibNames import Prelude () import Prelude.Compat -- | A symbolic node id newtype NodeId = NodeId Int deriving (Eq, Ord) -- | A symbolic word, tracking it's signedness and size. data SW = SW Kind NodeId deriving (Eq, Ord) instance HasKind SW where kindOf (SW k _) = k instance Show SW where show (SW _ (NodeId n)) | n < 0 = "s_" ++ show (abs n) | True = 's' : show n -- | Kind of a symbolic word. swKind :: SW -> Kind swKind (SW k _) = k -- | Forcing an argument; this is a necessary evil to make sure all the arguments -- to an uninterpreted function and sBranch test conditions are evaluated before called; -- the semantics of uinterpreted functions is necessarily strict; deviating from Haskell's forceSWArg :: SW -> IO () forceSWArg (SW k n) = k `seq` n `seq` return () -- | Constant False as a SW. Note that this value always occupies slot -2. falseSW :: SW falseSW = SW KBool $ NodeId (-2) -- | Constant False as a SW. Note that this value always occupies slot -1. trueSW :: SW trueSW = SW KBool $ NodeId (-1) -- | Symbolic operations data Op = Plus | Times | Minus | UNeg | Abs | Quot | Rem | Equal | NotEqual | LessThan | GreaterThan | LessEq | GreaterEq | Ite | And | Or | XOr | Not | Shl Int | Shr Int | Rol Int | Ror Int | Extract Int Int -- Extract i j: extract bits i to j. Least significant bit is 0 (big-endian) | Join -- Concat two words to form a bigger one, in the order given | LkUp (Int, Kind, Kind, Int) !SW !SW -- (table-index, arg-type, res-type, length of the table) index out-of-bounds-value | ArrEq Int Int -- Array equality | ArrRead Int | IntCast Kind Kind | Uninterpreted String | Label String -- Essentially no-op; useful for code generation to emit comments. | IEEEFP FPOp -- Floating-point ops, categorized separately deriving (Eq, Ord) -- | Floating point operations data FPOp = FP_Cast Kind Kind SW -- From-Kind, To-Kind, RoundingMode. This is "value" conversion | FP_Reinterpret Kind Kind -- From-Kind, To-Kind. This is bit-reinterpretation using IEEE-754 interchange format | FP_Abs | FP_Neg | FP_Add | FP_Sub | FP_Mul | FP_Div | FP_FMA | FP_Sqrt | FP_Rem | FP_RoundToIntegral | FP_Min | FP_Max | FP_ObjEqual | FP_IsNormal | FP_IsSubnormal | FP_IsZero | FP_IsInfinite | FP_IsNaN | FP_IsNegative | FP_IsPositive deriving (Eq, Ord) -- | Note that the show instance maps to the SMTLib names. We need to make sure -- this mapping stays correct through SMTLib changes. The only exception -- is FP_Cast; where we handle different source/origins explicitly later on. instance Show FPOp where show (FP_Cast f t r) = "(FP_Cast: " ++ show f ++ " -> " ++ show t ++ "using RM [" ++ show r ++ "])" show (FP_Reinterpret f t) = case (f, t) of (KBounded False 32, KFloat) -> "(_ to_fp 8 24)" (KBounded False 64, KDouble) -> "(_ to_fp 11 53)" _ -> error $ "SBV.FP_Reinterpret: Unexpected conversion: " ++ show f ++ " to " ++ show t show FP_Abs = "fp.abs" show FP_Neg = "fp.neg" show FP_Add = "fp.add" show FP_Sub = "fp.sub" show FP_Mul = "fp.mul" show FP_Div = "fp.div" show FP_FMA = "fp.fma" show FP_Sqrt = "fp.sqrt" show FP_Rem = "fp.rem" show FP_RoundToIntegral = "fp.roundToIntegral" show FP_Min = "fp.min" show FP_Max = "fp.max" show FP_ObjEqual = "=" show FP_IsNormal = "fp.isNormal" show FP_IsSubnormal = "fp.isSubnormal" show FP_IsZero = "fp.isZero" show FP_IsInfinite = "fp.isInfinite" show FP_IsNaN = "fp.isNaN" show FP_IsNegative = "fp.isNegative" show FP_IsPositive = "fp.isPositive" -- | Show instance for 'Op'. Note that this is largely for debugging purposes, not used -- for being read by any tool. instance Show Op where show (Shl i) = "<<" ++ show i show (Shr i) = ">>" ++ show i show (Rol i) = "<<<" ++ show i show (Ror i) = ">>>" ++ show i show (Extract i j) = "choose [" ++ show i ++ ":" ++ show j ++ "]" show (LkUp (ti, at, rt, l) i e) = "lookup(" ++ tinfo ++ ", " ++ show i ++ ", " ++ show e ++ ")" where tinfo = "table" ++ show ti ++ "(" ++ show at ++ " -> " ++ show rt ++ ", " ++ show l ++ ")" show (ArrEq i j) = "array_" ++ show i ++ " == array_" ++ show j show (ArrRead i) = "select array_" ++ show i show (IntCast fr to) = "cast_" ++ show fr ++ "_" ++ show to show (Uninterpreted i) = "[uninterpreted] " ++ i show (Label s) = "[label] " ++ s show (IEEEFP w) = show w show op | Just s <- op `lookup` syms = s | True = error "impossible happened; can't find op!" where syms = [ (Plus, "+"), (Times, "*"), (Minus, "-"), (UNeg, "-"), (Abs, "abs") , (Quot, "quot") , (Rem, "rem") , (Equal, "=="), (NotEqual, "/=") , (LessThan, "<"), (GreaterThan, ">"), (LessEq, "<="), (GreaterEq, ">=") , (Ite, "if_then_else") , (And, "&"), (Or, "|"), (XOr, "^"), (Not, "~") , (Join, "#") ] -- | Quantifiers: forall or exists. Note that we allow -- arbitrary nestings. data Quantifier = ALL | EX deriving Eq -- | Are there any existential quantifiers? needsExistentials :: [Quantifier] -> Bool needsExistentials = (EX `elem`) -- | A simple type for SBV computations, used mainly for uninterpreted constants. -- We keep track of the signedness/size of the arguments. A non-function will -- have just one entry in the list. newtype SBVType = SBVType [Kind] deriving (Eq, Ord) instance Show SBVType where show (SBVType []) = error "SBV: internal error, empty SBVType" show (SBVType xs) = intercalate " -> " $ map show xs -- | A symbolic expression data SBVExpr = SBVApp !Op ![SW] deriving (Eq, Ord) -- | To improve hash-consing, take advantage of commutative operators by -- reordering their arguments. reorder :: SBVExpr -> SBVExpr reorder s = case s of SBVApp op [a, b] | isCommutative op && a > b -> SBVApp op [b, a] _ -> s where isCommutative :: Op -> Bool isCommutative o = o `elem` [Plus, Times, Equal, NotEqual, And, Or, XOr] -- | Show instance for 'SBVExpr'. Again, only for debugging purposes. instance Show SBVExpr where show (SBVApp Ite [t, a, b]) = unwords ["if", show t, "then", show a, "else", show b] show (SBVApp (Shl i) [a]) = unwords [show a, "<<", show i] show (SBVApp (Shr i) [a]) = unwords [show a, ">>", show i] show (SBVApp (Rol i) [a]) = unwords [show a, "<<<", show i] show (SBVApp (Ror i) [a]) = unwords [show a, ">>>", show i] show (SBVApp op [a, b]) = unwords [show a, show op, show b] show (SBVApp op args) = unwords (show op : map show args) -- | A program is a sequence of assignments newtype SBVPgm = SBVPgm {pgmAssignments :: S.Seq (SW, SBVExpr)} -- | 'NamedSymVar' pairs symbolic words and user given/automatically generated names type NamedSymVar = (SW, String) -- | Result of running a symbolic computation data Result = Result { reskinds :: Set.Set Kind -- ^ kinds used in the program , resTraces :: [(String, CW)] -- ^ quick-check counter-example information (if any) , resUISegs :: [(String, [String])] -- ^ uninterpeted code segments , resInputs :: [(Quantifier, NamedSymVar)] -- ^ inputs (possibly existential) , resConsts :: [(SW, CW)] -- ^ constants , resTables :: [((Int, Kind, Kind), [SW])] -- ^ tables (automatically constructed) (tableno, index-type, result-type) elts , resArrays :: [(Int, ArrayInfo)] -- ^ arrays (user specified) , resUIConsts :: [(String, SBVType)] -- ^ uninterpreted constants , resAxioms :: [(String, [String])] -- ^ axioms , resAsgns :: SBVPgm -- ^ assignments , resConstraints :: [SW] -- ^ additional constraints (boolean) , resAssertions :: [(String, Maybe CallStack, SW)] -- ^ assertions , resOutputs :: [SW] -- ^ outputs } -- | Show instance for 'Result'. Only for debugging purposes. instance Show Result where show (Result _ _ _ _ cs _ _ [] [] _ [] _ [r]) | Just c <- r `lookup` cs = show c show (Result kinds _ cgs is cs ts as uis axs xs cstrs asserts os) = intercalate "\n" $ (if null usorts then [] else "SORTS" : map (" " ++) usorts) ++ ["INPUTS"] ++ map shn is ++ ["CONSTANTS"] ++ map shc cs ++ ["TABLES"] ++ map sht ts ++ ["ARRAYS"] ++ map sha as ++ ["UNINTERPRETED CONSTANTS"] ++ map shui uis ++ ["USER GIVEN CODE SEGMENTS"] ++ concatMap shcg cgs ++ ["AXIOMS"] ++ map shax axs ++ ["DEFINE"] ++ map (\(s, e) -> " " ++ shs s ++ " = " ++ show e) (F.toList (pgmAssignments xs)) ++ ["CONSTRAINTS"] ++ map ((" " ++) . show) cstrs ++ ["ASSERTIONS"] ++ map ((" "++) . shAssert) asserts ++ ["OUTPUTS"] ++ map ((" " ++) . show) os where usorts = [sh s t | KUserSort s t <- Set.toList kinds] where sh s (Left _) = s sh s (Right es) = s ++ " (" ++ intercalate ", " es ++ ")" shs sw = show sw ++ " :: " ++ show (swKind sw) sht ((i, at, rt), es) = " Table " ++ show i ++ " : " ++ show at ++ "->" ++ show rt ++ " = " ++ show es shc (sw, cw) = " " ++ show sw ++ " = " ++ show cw shcg (s, ss) = ("Variable: " ++ s) : map (" " ++) ss shn (q, (sw, nm)) = " " ++ ni ++ " :: " ++ show (swKind sw) ++ ex ++ alias where ni = show sw ex | q == ALL = "" | True = ", existential" alias | ni == nm = "" | True = ", aliasing " ++ show nm sha (i, (nm, (ai, bi), ctx)) = " " ++ ni ++ " :: " ++ show ai ++ " -> " ++ show bi ++ alias ++ "\n Context: " ++ show ctx where ni = "array_" ++ show i alias | ni == nm = "" | True = ", aliasing " ++ show nm shui (nm, t) = " [uninterpreted] " ++ nm ++ " :: " ++ show t shax (nm, ss) = " -- user defined axiom: " ++ nm ++ "\n " ++ intercalate "\n " ss shAssert (nm, stk, p) = " -- assertion: " ++ nm ++ " " ++ maybe "[No location]" showCallStack stk ++ ": " ++ show p -- | The context of a symbolic array as created data ArrayContext = ArrayFree (Maybe SW) -- ^ A new array, with potential initializer for each cell | ArrayReset Int SW -- ^ An array created from another array by fixing each element to another value | ArrayMutate Int SW SW -- ^ An array created by mutating another array at a given cell | ArrayMerge SW Int Int -- ^ An array created by symbolically merging two other arrays instance Show ArrayContext where show (ArrayFree Nothing) = " initialized with random elements" show (ArrayFree (Just s)) = " initialized with " ++ show s ++ " :: " ++ show (swKind s) show (ArrayReset i s) = " reset array_" ++ show i ++ " with " ++ show s ++ " :: " ++ show (swKind s) show (ArrayMutate i a b) = " cloned from array_" ++ show i ++ " with " ++ show a ++ " :: " ++ show (swKind a) ++ " |-> " ++ show b ++ " :: " ++ show (swKind b) show (ArrayMerge s i j) = " merged arrays " ++ show i ++ " and " ++ show j ++ " on condition " ++ show s -- | Expression map, used for hash-consing type ExprMap = Map.Map SBVExpr SW -- | Constants are stored in a map, for hash-consing. The bool is needed to tell -0 from +0, sigh type CnstMap = Map.Map (Bool, CW) SW -- | Kinds used in the program; used for determining the final SMT-Lib logic to pick type KindSet = Set.Set Kind -- | Tables generated during a symbolic run type TableMap = Map.Map [SW] (Int, Kind, Kind) -- | Representation for symbolic arrays type ArrayInfo = (String, (Kind, Kind), ArrayContext) -- | Arrays generated during a symbolic run type ArrayMap = IMap.IntMap ArrayInfo -- | Uninterpreted-constants generated during a symbolic run type UIMap = Map.Map String SBVType -- | Code-segments for Uninterpreted-constants, as given by the user type CgMap = Map.Map String [String] -- | Cached values, implementing sharing type Cache a = IMap.IntMap [(StableName (State -> IO a), a)] -- | Different means of running a symbolic piece of code data SBVRunMode = Proof (Bool, SMTConfig) -- ^ Fully Symbolic, proof mode. | CodeGen -- ^ Code generation mode. | Concrete StdGen -- ^ Concrete simulation mode. The StdGen is for the pConstrain acceptance in cross runs. -- | Is this a concrete run? (i.e., quick-check or test-generation like) isConcreteMode :: State -> Bool isConcreteMode State{runMode} = case runMode of Concrete{} -> True Proof{} -> False CodeGen -> False -- | Is this a CodeGen run? (i.e., generating code) isCodeGenMode :: State -> Bool isCodeGenMode State{runMode} = case runMode of Concrete{} -> False Proof{} -> False CodeGen -> True -- | The state of the symbolic interpreter data State = State { runMode :: SBVRunMode , pathCond :: SVal -- ^ kind KBool , rStdGen :: IORef StdGen , rCInfo :: IORef [(String, CW)] , rctr :: IORef Int , rUsedKinds :: IORef KindSet , rinps :: IORef [(Quantifier, NamedSymVar)] , rConstraints :: IORef [SW] , routs :: IORef [SW] , rtblMap :: IORef TableMap , spgm :: IORef SBVPgm , rconstMap :: IORef CnstMap , rexprMap :: IORef ExprMap , rArrayMap :: IORef ArrayMap , rUIMap :: IORef UIMap , rCgMap :: IORef CgMap , raxioms :: IORef [(String, [String])] , rAsserts :: IORef [(String, Maybe CallStack, SW)] , rSWCache :: IORef (Cache SW) , rAICache :: IORef (Cache Int) } -- | Get the current path condition getSValPathCondition :: State -> SVal getSValPathCondition = pathCond -- | Extend the path condition with the given test value. extendSValPathCondition :: State -> (SVal -> SVal) -> State extendSValPathCondition st f = st{pathCond = f (pathCond st)} -- | Are we running in proof mode? inProofMode :: State -> Bool inProofMode s = case runMode s of Proof{} -> True CodeGen -> False Concrete{} -> False -- | If in proof mode, get the underlying configuration (used for 'sBranch') getSBranchRunConfig :: State -> Maybe SMTConfig getSBranchRunConfig st = case runMode st of Proof (_, s) -> Just s _ -> Nothing -- | The "Symbolic" value. Either a constant (@Left@) or a symbolic -- value (@Right Cached@). Note that caching is essential for making -- sure sharing is preserved. data SVal = SVal !Kind !(Either CW (Cached SW)) instance HasKind SVal where kindOf (SVal k _) = k -- | Show instance for 'SVal'. Not particularly "desirable", but will do if needed -- NB. We do not show the type info on constant KBool values, since there's no -- implicit "fromBoolean" applied to Booleans in Haskell; and thus a statement -- of the form "True :: SBool" is just meaningless. (There should be a fromBoolean!) instance Show SVal where show (SVal KBool (Left c)) = showCW False c show (SVal k (Left c)) = showCW False c ++ " :: " ++ show k show (SVal k (Right _)) = " :: " ++ show k -- | Equality constraint on SBV values. Not desirable since we can't really compare two -- symbolic values, but will do. instance Eq SVal where SVal _ (Left a) == SVal _ (Left b) = a == b a == b = error $ "Comparing symbolic bit-vectors; Use (.==) instead. Received: " ++ show (a, b) SVal _ (Left a) /= SVal _ (Left b) = a /= b a /= b = error $ "Comparing symbolic bit-vectors; Use (./=) instead. Received: " ++ show (a, b) -- | Increment the variable counter incCtr :: State -> IO Int incCtr s = do ctr <- readIORef (rctr s) let i = ctr + 1 i `seq` writeIORef (rctr s) i return ctr -- | Generate a random value, for quick-check and test-gen purposes throwDice :: State -> IO Double throwDice st = do g <- readIORef (rStdGen st) let (r, g') = randomR (0, 1) g writeIORef (rStdGen st) g' return r -- | Create a new uninterpreted symbol, possibly with user given code newUninterpreted :: State -> String -> SBVType -> Maybe [String] -> IO () newUninterpreted st nm t mbCode | null nm || not enclosed && (not (isAlpha (head nm)) || not (all validChar (tail nm))) = error $ "Bad uninterpreted constant name: " ++ show nm ++ ". Must be a valid identifier." | True = do uiMap <- readIORef (rUIMap st) case nm `Map.lookup` uiMap of Just t' -> when (t /= t') $ error $ "Uninterpreted constant " ++ show nm ++ " used at incompatible types\n" ++ " Current type : " ++ show t ++ "\n" ++ " Previously used at: " ++ show t' Nothing -> do modifyIORef (rUIMap st) (Map.insert nm t) when (isJust mbCode) $ modifyIORef (rCgMap st) (Map.insert nm (fromJust mbCode)) where validChar x = isAlphaNum x || x `elem` "_" enclosed = head nm == '|' && last nm == '|' && length nm > 2 && not (any (`elem` "|\\") (tail (init nm))) -- | Add a new sAssert based constraint addAssertion :: State -> Maybe CallStack -> String -> SW -> IO () addAssertion st cs msg cond = modifyIORef (rAsserts st) ((msg, cs, cond):) -- | Create an internal variable, which acts as an input but isn't visible to the user. -- Such variables are existentially quantified in a SAT context, and universally quantified -- in a proof context. internalVariable :: State -> Kind -> IO SW internalVariable st k = do (sw, nm) <- newSW st k let q = case runMode st of Proof (True, _) -> EX _ -> ALL modifyIORef (rinps st) ((q, (sw, "__internal_sbv_" ++ nm)):) return sw {-# INLINE internalVariable #-} -- | Create a new SW newSW :: State -> Kind -> IO (SW, String) newSW st k = do ctr <- incCtr st let sw = SW k (NodeId ctr) registerKind st k return (sw, 's' : show ctr) {-# INLINE newSW #-} -- | Register a new kind with the system, used for uninterpreted sorts registerKind :: State -> Kind -> IO () registerKind st k | KUserSort sortName _ <- k, map toLower sortName `elem` smtLibReservedNames = error $ "SBV: " ++ show sortName ++ " is a reserved sort; please use a different name." | True = modifyIORef (rUsedKinds st) (Set.insert k) -- | Create a new constant; hash-cons as necessary -- NB. For each constant, we also store weather it's negative-0 or not, -- as otherwise +0 == -0 and thus we'd confuse those entries. That's a -- bummer as we incur an extra boolean for this rare case, but it's simple -- and hopefully we don't generate a ton of constants in general. newConst :: State -> CW -> IO SW newConst st c = do constMap <- readIORef (rconstMap st) let key = (isNeg0 (cwVal c), c) case key `Map.lookup` constMap of Just sw -> return sw Nothing -> do let k = kindOf c (sw, _) <- newSW st k modifyIORef (rconstMap st) (Map.insert key sw) return sw where isNeg0 (CWFloat f) = isNegativeZero f isNeg0 (CWDouble d) = isNegativeZero d isNeg0 _ = False {-# INLINE newConst #-} -- | Create a new table; hash-cons as necessary getTableIndex :: State -> Kind -> Kind -> [SW] -> IO Int getTableIndex st at rt elts = do tblMap <- readIORef (rtblMap st) case elts `Map.lookup` tblMap of Just (i, _, _) -> return i Nothing -> do let i = Map.size tblMap modifyIORef (rtblMap st) (Map.insert elts (i, at, rt)) return i -- | Create a new expression; hash-cons as necessary newExpr :: State -> Kind -> SBVExpr -> IO SW newExpr st k app = do let e = reorder app exprMap <- readIORef (rexprMap st) case e `Map.lookup` exprMap of Just sw -> return sw Nothing -> do (sw, _) <- newSW st k modifyIORef (spgm st) (\(SBVPgm xs) -> SBVPgm (xs S.|> (sw, e))) modifyIORef (rexprMap st) (Map.insert e sw) return sw {-# INLINE newExpr #-} -- | Convert a symbolic value to a symbolic-word svToSW :: State -> SVal -> IO SW svToSW st (SVal _ (Left c)) = newConst st c svToSW st (SVal _ (Right f)) = uncache f st -- | Convert a symbolic value to an SW, inside the Symbolic monad svToSymSW :: SVal -> Symbolic SW svToSymSW sbv = do st <- ask liftIO $ svToSW st sbv ------------------------------------------------------------------------- -- * Symbolic Computations ------------------------------------------------------------------------- -- | A Symbolic computation. Represented by a reader monad carrying the -- state of the computation, layered on top of IO for creating unique -- references to hold onto intermediate results. newtype Symbolic a = Symbolic (ReaderT State IO a) deriving (Applicative, Functor, Monad, MonadIO, MonadReader State) -- | Create a symbolic value, based on the quantifier we have. If an -- explicit quantifier is given, we just use that. If not, then we -- pick existential for SAT calls and universal for everything else. -- @randomCW@ is used for generating random values for this variable -- when used for 'quickCheck' purposes. svMkSymVar :: Maybe Quantifier -> Kind -> Maybe String -> Symbolic SVal svMkSymVar mbQ k mbNm = do st <- ask let q = case (mbQ, runMode st) of (Just x, _) -> x -- user given, just take it (Nothing, Concrete{}) -> ALL -- concrete simulation, pick universal (Nothing, Proof (True, _)) -> EX -- sat mode, pick existential (Nothing, Proof (False, _)) -> ALL -- proof mode, pick universal (Nothing, CodeGen) -> ALL -- code generation, pick universal case runMode st of Concrete _ | q == EX -> case mbNm of Nothing -> error $ "Cannot quick-check in the presence of existential variables, type: " ++ show k Just nm -> error $ "Cannot quick-check in the presence of existential variable " ++ nm ++ " :: " ++ show k Concrete _ -> do cw <- liftIO (randomCW k) liftIO $ modifyIORef (rCInfo st) ((fromMaybe "_" mbNm, cw):) return (SVal k (Left cw)) _ -> do (sw, internalName) <- liftIO $ newSW st k let nm = fromMaybe internalName mbNm liftIO $ modifyIORef (rinps st) ((q, (sw, nm)):) return $ SVal k $ Right $ cache (const (return sw)) -- | Create a properly quantified variable of a user defined sort. Only valid -- in proof contexts. mkSValUserSort :: Kind -> Maybe Quantifier -> Maybe String -> Symbolic SVal mkSValUserSort k mbQ mbNm = do st <- ask let (KUserSort sortName _) = k liftIO $ registerKind st k let q = case (mbQ, runMode st) of (Just x, _) -> x (Nothing, Proof (True, _)) -> EX (Nothing, Proof (False, _)) -> ALL (Nothing, CodeGen) -> error $ "SBV: Uninterpreted sort " ++ sortName ++ " can not be used in code-generation mode." (Nothing, Concrete{}) -> error $ "SBV: Uninterpreted sort " ++ sortName ++ " can not be used in concrete simulation mode." ctr <- liftIO $ incCtr st let sw = SW k (NodeId ctr) nm = fromMaybe ('s':show ctr) mbNm liftIO $ modifyIORef (rinps st) ((q, (sw, nm)):) return $ SVal k $ Right $ cache (const (return sw)) -- | Add a user specified axiom to the generated SMT-Lib file. The first argument is a mere -- string, use for commenting purposes. The second argument is intended to hold the multiple-lines -- of the axiom text as expressed in SMT-Lib notation. Note that we perform no checks on the axiom -- itself, to see whether it's actually well-formed or is sensical by any means. -- A separate formalization of SMT-Lib would be very useful here. addAxiom :: String -> [String] -> Symbolic () addAxiom nm ax = do st <- ask liftIO $ modifyIORef (raxioms st) ((nm, ax) :) -- | Run a symbolic computation in Proof mode and return a 'Result'. The boolean -- argument indicates if this is a sat instance or not. runSymbolic :: (Bool, SMTConfig) -> Symbolic a -> IO Result runSymbolic m c = snd `fmap` runSymbolic' (Proof m) c -- | Run a symbolic computation, and return a extra value paired up with the 'Result' runSymbolic' :: SBVRunMode -> Symbolic a -> IO (a, Result) runSymbolic' currentRunMode (Symbolic c) = do ctr <- newIORef (-2) -- start from -2; False and True will always occupy the first two elements cInfo <- newIORef [] pgm <- newIORef (SBVPgm S.empty) emap <- newIORef Map.empty cmap <- newIORef Map.empty inps <- newIORef [] outs <- newIORef [] tables <- newIORef Map.empty arrays <- newIORef IMap.empty uis <- newIORef Map.empty cgs <- newIORef Map.empty axioms <- newIORef [] swCache <- newIORef IMap.empty aiCache <- newIORef IMap.empty usedKinds <- newIORef Set.empty cstrs <- newIORef [] asserts <- newIORef [] rGen <- case currentRunMode of Concrete g -> newIORef g _ -> newStdGen >>= newIORef let st = State { runMode = currentRunMode , pathCond = SVal KBool (Left trueCW) , rStdGen = rGen , rCInfo = cInfo , rctr = ctr , rUsedKinds = usedKinds , rinps = inps , routs = outs , rtblMap = tables , spgm = pgm , rconstMap = cmap , rArrayMap = arrays , rexprMap = emap , rUIMap = uis , rCgMap = cgs , raxioms = axioms , rSWCache = swCache , rAICache = aiCache , rConstraints = cstrs , rAsserts = asserts } _ <- newConst st falseCW -- s(-2) == falseSW _ <- newConst st trueCW -- s(-1) == trueSW r <- runReaderT c st res <- extractSymbolicSimulationState st return (r, res) -- | Grab the program from a running symbolic simulation state. This is useful for internal purposes, for -- instance when implementing 'sBranch'. extractSymbolicSimulationState :: State -> IO Result extractSymbolicSimulationState st@State{ spgm=pgm, rinps=inps, routs=outs, rtblMap=tables, rArrayMap=arrays, rUIMap=uis, raxioms=axioms , rAsserts=asserts, rUsedKinds=usedKinds, rCgMap=cgs, rCInfo=cInfo, rConstraints=cstrs} = do SBVPgm rpgm <- readIORef pgm inpsO <- reverse `fmap` readIORef inps outsO <- reverse `fmap` readIORef outs let swap (a, b) = (b, a) swapc ((_, a), b) = (b, a) cmp (a, _) (b, _) = a `compare` b cnsts <- (sortBy cmp . map swapc . Map.toList) `fmap` readIORef (rconstMap st) tbls <- (sortBy (\((x, _, _), _) ((y, _, _), _) -> x `compare` y) . map swap . Map.toList) `fmap` readIORef tables arrs <- IMap.toAscList `fmap` readIORef arrays unint <- Map.toList `fmap` readIORef uis axs <- reverse `fmap` readIORef axioms knds <- readIORef usedKinds cgMap <- Map.toList `fmap` readIORef cgs traceVals <- reverse `fmap` readIORef cInfo extraCstrs <- reverse `fmap` readIORef cstrs assertions <- reverse `fmap` readIORef asserts return $ Result knds traceVals cgMap inpsO cnsts tbls arrs unint axs (SBVPgm rpgm) extraCstrs assertions outsO -- | Handling constraints imposeConstraint :: SVal -> Symbolic () imposeConstraint c = do st <- ask case runMode st of CodeGen -> error "SBV: constraints are not allowed in code-generation" _ -> liftIO $ internalConstraint st c -- | Require a boolean condition to be true in the state. Only used for internal purposes. internalConstraint :: State -> SVal -> IO () internalConstraint st b = do v <- svToSW st b modifyIORef (rConstraints st) (v:) -- | Add a constraint with a given probability addSValConstraint :: Maybe Double -> SVal -> SVal -> Symbolic () addSValConstraint Nothing c _ = imposeConstraint c addSValConstraint (Just t) c c' | t < 0 || t > 1 = error $ "SBV: pConstrain: Invalid probability threshold: " ++ show t ++ ", must be in [0, 1]." | True = do st <- ask unless (isConcreteMode st) $ error "SBV: pConstrain only allowed in 'genTest' or 'quickCheck' contexts." case () of () | t > 0 && t < 1 -> liftIO (throwDice st) >>= \d -> imposeConstraint (if d <= t then c else c') | t > 0 -> imposeConstraint c | True -> imposeConstraint c' -- | Mark an interim result as an output. Useful when constructing Symbolic programs -- that return multiple values, or when the result is programmatically computed. outputSVal :: SVal -> Symbolic () outputSVal (SVal _ (Left c)) = do st <- ask sw <- liftIO $ newConst st c liftIO $ modifyIORef (routs st) (sw:) outputSVal (SVal _ (Right f)) = do st <- ask sw <- liftIO $ uncache f st liftIO $ modifyIORef (routs st) (sw:) --------------------------------------------------------------------------------- -- * Symbolic Arrays --------------------------------------------------------------------------------- -- | Arrays implemented in terms of SMT-arrays: -- -- * Maps directly to SMT-lib arrays -- -- * Reading from an unintialized value is OK and yields an unspecified result -- -- * Can check for equality of these arrays -- -- * Cannot quick-check theorems using @SArr@ values -- -- * Typically slower as it heavily relies on SMT-solving for the array theory -- data SArr = SArr (Kind, Kind) (Cached ArrayIndex) -- | Read the array element at @a@ readSArr :: SArr -> SVal -> SVal readSArr (SArr (_, bk) f) a = SVal bk $ Right $ cache r where r st = do arr <- uncacheAI f st i <- svToSW st a newExpr st bk (SBVApp (ArrRead arr) [i]) -- | Reset all the elements of the array to the value @b@ resetSArr :: SArr -> SVal -> SArr resetSArr (SArr ainfo f) b = SArr ainfo $ cache g where g st = do amap <- readIORef (rArrayMap st) val <- svToSW st b i <- uncacheAI f st let j = IMap.size amap j `seq` modifyIORef (rArrayMap st) (IMap.insert j ("array_" ++ show j, ainfo, ArrayReset i val)) return j -- | Update the element at @a@ to be @b@ writeSArr :: SArr -> SVal -> SVal -> SArr writeSArr (SArr ainfo f) a b = SArr ainfo $ cache g where g st = do arr <- uncacheAI f st addr <- svToSW st a val <- svToSW st b amap <- readIORef (rArrayMap st) let j = IMap.size amap j `seq` modifyIORef (rArrayMap st) (IMap.insert j ("array_" ++ show j, ainfo, ArrayMutate arr addr val)) return j -- | Merge two given arrays on the symbolic condition -- Intuitively: @mergeArrays cond a b = if cond then a else b@. -- Merging pushes the if-then-else choice down on to elements mergeSArr :: SVal -> SArr -> SArr -> SArr mergeSArr t (SArr ainfo a) (SArr _ b) = SArr ainfo $ cache h where h st = do ai <- uncacheAI a st bi <- uncacheAI b st ts <- svToSW st t amap <- readIORef (rArrayMap st) let k = IMap.size amap k `seq` modifyIORef (rArrayMap st) (IMap.insert k ("array_" ++ show k, ainfo, ArrayMerge ts ai bi)) return k -- | Create a named new array, with an optional initial value newSArr :: (Kind, Kind) -> (Int -> String) -> Maybe SVal -> Symbolic SArr newSArr ainfo mkNm mbInit = do st <- ask amap <- liftIO $ readIORef $ rArrayMap st let i = IMap.size amap nm = mkNm i actx <- liftIO $ case mbInit of Nothing -> return $ ArrayFree Nothing Just ival -> svToSW st ival >>= \sw -> return $ ArrayFree (Just sw) liftIO $ modifyIORef (rArrayMap st) (IMap.insert i (nm, ainfo, actx)) return $ SArr ainfo $ cache $ const $ return i -- | Compare two arrays for equality eqSArr :: SArr -> SArr -> SVal eqSArr (SArr _ a) (SArr _ b) = SVal KBool $ Right $ cache c where c st = do ai <- uncacheAI a st bi <- uncacheAI b st newExpr st KBool (SBVApp (ArrEq ai bi) []) --------------------------------------------------------------------------------- -- * Cached values --------------------------------------------------------------------------------- -- | We implement a peculiar caching mechanism, applicable to the use case in -- implementation of SBV's. Whenever we do a state based computation, we do -- not want to keep on evaluating it in the then-current state. That will -- produce essentially a semantically equivalent value. Thus, we want to run -- it only once, and reuse that result, capturing the sharing at the Haskell -- level. This is similar to the "type-safe observable sharing" work, but also -- takes into the account of how symbolic simulation executes. -- -- See Andy Gill's type-safe obervable sharing trick for the inspiration behind -- this technique: -- -- Note that this is *not* a general memo utility! newtype Cached a = Cached (State -> IO a) -- | Cache a state-based computation cache :: (State -> IO a) -> Cached a cache = Cached -- | Uncache a previously cached computation uncache :: Cached SW -> State -> IO SW uncache = uncacheGen rSWCache -- | An array index is simple an int value type ArrayIndex = Int -- | Uncache, retrieving array indexes uncacheAI :: Cached ArrayIndex -> State -> IO ArrayIndex uncacheAI = uncacheGen rAICache -- | Generic uncaching. Note that this is entirely safe, since we do it in the IO monad. uncacheGen :: (State -> IORef (Cache a)) -> Cached a -> State -> IO a uncacheGen getCache (Cached f) st = do let rCache = getCache st stored <- readIORef rCache sn <- f `seq` makeStableName f let h = hashStableName sn case maybe Nothing (sn `lookup`) (h `IMap.lookup` stored) of Just r -> return r Nothing -> do r <- f st r `seq` modifyIORef rCache (IMap.insertWith (++) h [(sn, r)]) return r -- | Representation of SMTLib Program versions. As of June 2015, we're dropping support -- for SMTLib1, and supporting SMTLib2 only. We keep this data-type around in case -- SMTLib3 comes along and we want to support 2 and 3 simultaneously. data SMTLibVersion = SMTLib2 deriving (Bounded, Enum, Eq, Show) -- | The extension associated with the version smtLibVersionExtension :: SMTLibVersion -> String smtLibVersionExtension SMTLib2 = "smt2" -- | Representation of an SMT-Lib program. In between pre and post goes the refuted models data SMTLibPgm = SMTLibPgm SMTLibVersion ( [(String, SW)] -- alias table , [String] -- pre: declarations. , [String]) -- post: formula instance NFData SMTLibVersion where rnf a = seq a () instance NFData SMTLibPgm where rnf a = seq a () instance Show SMTLibPgm where show (SMTLibPgm _ (_, pre, post)) = intercalate "\n" $ pre ++ post -- Other Technicalities.. instance NFData CW where rnf (CW x y) = x `seq` y `seq` () -- Can't really force this, but not a big deal instance NFData CallStack where rnf _ = () instance NFData Result where rnf (Result kindInfo qcInfo cgs inps consts tbls arrs uis axs pgm cstr asserts outs) = rnf kindInfo `seq` rnf qcInfo `seq` rnf cgs `seq` rnf inps `seq` rnf consts `seq` rnf tbls `seq` rnf arrs `seq` rnf uis `seq` rnf axs `seq` rnf pgm `seq` rnf cstr `seq` rnf asserts `seq` rnf outs instance NFData Kind where rnf a = seq a () instance NFData ArrayContext where rnf a = seq a () instance NFData SW where rnf a = seq a () instance NFData SBVExpr where rnf a = seq a () instance NFData Quantifier where rnf a = seq a () instance NFData SBVType where rnf a = seq a () instance NFData a => NFData (Cached a) where rnf (Cached f) = f `seq` () instance NFData SVal where rnf (SVal x y) = rnf x `seq` rnf y `seq` () instance NFData SBVPgm where rnf a = seq a () instance NFData SMTResult where rnf (Unsatisfiable _) = () rnf (Satisfiable _ xs) = rnf xs `seq` () rnf (Unknown _ xs) = rnf xs `seq` () rnf (ProofError _ xs) = rnf xs `seq` () rnf (TimeOut _) = () instance NFData SMTModel where rnf (SMTModel assocs) = rnf assocs `seq` () instance NFData SMTScript where rnf (SMTScript b m) = rnf b `seq` rnf m `seq` () -- | SMT-Lib logics. If left unspecified SBV will pick the logic based on what it determines is needed. However, the -- user can override this choice using the 'useLogic' parameter to the configuration. This is especially handy if -- one is experimenting with custom logics that might be supported on new solvers. See -- for the official list. data SMTLibLogic = AUFLIA -- ^ Formulas over the theory of linear integer arithmetic and arrays extended with free sort and function symbols but restricted to arrays with integer indices and values | AUFLIRA -- ^ Linear formulas with free sort and function symbols over one- and two-dimentional arrays of integer index and real value | AUFNIRA -- ^ Formulas with free function and predicate symbols over a theory of arrays of arrays of integer index and real value | LRA -- ^ Linear formulas in linear real arithmetic | QF_ABV -- ^ Quantifier-free formulas over the theory of bitvectors and bitvector arrays | QF_AUFBV -- ^ Quantifier-free formulas over the theory of bitvectors and bitvector arrays extended with free sort and function symbols | QF_AUFLIA -- ^ Quantifier-free linear formulas over the theory of integer arrays extended with free sort and function symbols | QF_AX -- ^ Quantifier-free formulas over the theory of arrays with extensionality | QF_BV -- ^ Quantifier-free formulas over the theory of fixed-size bitvectors | QF_IDL -- ^ Difference Logic over the integers. Boolean combinations of inequations of the form x - y < b where x and y are integer variables and b is an integer constant | QF_LIA -- ^ Unquantified linear integer arithmetic. In essence, Boolean combinations of inequations between linear polynomials over integer variables | QF_LRA -- ^ Unquantified linear real arithmetic. In essence, Boolean combinations of inequations between linear polynomials over real variables. | QF_NIA -- ^ Quantifier-free integer arithmetic. | QF_NRA -- ^ Quantifier-free real arithmetic. | QF_RDL -- ^ Difference Logic over the reals. In essence, Boolean combinations of inequations of the form x - y < b where x and y are real variables and b is a rational constant. | QF_UF -- ^ Unquantified formulas built over a signature of uninterpreted (i.e., free) sort and function symbols. | QF_UFBV -- ^ Unquantified formulas over bitvectors with uninterpreted sort function and symbols. | QF_UFIDL -- ^ Difference Logic over the integers (in essence) but with uninterpreted sort and function symbols. | QF_UFLIA -- ^ Unquantified linear integer arithmetic with uninterpreted sort and function symbols. | QF_UFLRA -- ^ Unquantified linear real arithmetic with uninterpreted sort and function symbols. | QF_UFNRA -- ^ Unquantified non-linear real arithmetic with uninterpreted sort and function symbols. | UFLRA -- ^ Linear real arithmetic with uninterpreted sort and function symbols. | UFNIA -- ^ Non-linear integer arithmetic with uninterpreted sort and function symbols. | QF_FPBV -- ^ Quantifier-free formulas over the theory of floating point numbers, arrays, and bit-vectors | QF_FP -- ^ Quantifier-free formulas over the theory of floating point numbers deriving Show -- | Chosen logic for the solver data Logic = PredefinedLogic SMTLibLogic -- ^ Use one of the logics as defined by the standard | CustomLogic String -- ^ Use this name for the logic instance Show Logic where show (PredefinedLogic l) = show l show (CustomLogic s) = s -- | Translation tricks needed for specific capabilities afforded by each solver data SolverCapabilities = SolverCapabilities { capSolverName :: String -- ^ Name of the solver , mbDefaultLogic :: Maybe String -- ^ set-logic string to use in case not automatically determined (if any) , supportsMacros :: Bool -- ^ Does the solver understand SMT-Lib2 macros? , supportsProduceModels :: Bool -- ^ Does the solver understand produce-models option setting , supportsQuantifiers :: Bool -- ^ Does the solver understand SMT-Lib2 style quantifiers? , supportsUninterpretedSorts :: Bool -- ^ Does the solver understand SMT-Lib2 style uninterpreted-sorts , supportsUnboundedInts :: Bool -- ^ Does the solver support unbounded integers? , supportsReals :: Bool -- ^ Does the solver support reals? , supportsFloats :: Bool -- ^ Does the solver support single-precision floating point numbers? , supportsDoubles :: Bool -- ^ Does the solver support double-precision floating point numbers? } -- | Rounding mode to be used for the IEEE floating-point operations. -- Note that Haskell's default is 'RoundNearestTiesToEven'. If you use -- a different rounding mode, then the counter-examples you get may not -- match what you observe in Haskell. data RoundingMode = RoundNearestTiesToEven -- ^ Round to nearest representable floating point value. -- If precisely at half-way, pick the even number. -- (In this context, /even/ means the lowest-order bit is zero.) | RoundNearestTiesToAway -- ^ Round to nearest representable floating point value. -- If precisely at half-way, pick the number further away from 0. -- (That is, for positive values, pick the greater; for negative values, pick the smaller.) | RoundTowardPositive -- ^ Round towards positive infinity. (Also known as rounding-up or ceiling.) | RoundTowardNegative -- ^ Round towards negative infinity. (Also known as rounding-down or floor.) | RoundTowardZero -- ^ Round towards zero. (Also known as truncation.) deriving (Eq, Ord, Show, Read, T.Typeable, G.Data, Bounded, Enum) -- | 'RoundingMode' kind instance HasKind RoundingMode -- | Solver configuration. See also 'z3', 'yices', 'cvc4', 'boolector', 'mathSAT', etc. which are instantiations of this type for those solvers, with -- reasonable defaults. In particular, custom configuration can be created by varying those values. (Such as @z3{verbose=True}@.) -- -- Most fields are self explanatory. The notion of precision for printing algebraic reals stems from the fact that such values does -- not necessarily have finite decimal representations, and hence we have to stop printing at some depth. It is important to -- emphasize that such values always have infinite precision internally. The issue is merely with how we print such an infinite -- precision value on the screen. The field 'printRealPrec' controls the printing precision, by specifying the number of digits after -- the decimal point. The default value is 16, but it can be set to any positive integer. -- -- When printing, SBV will add the suffix @...@ at the and of a real-value, if the given bound is not sufficient to represent the real-value -- exactly. Otherwise, the number will be written out in standard decimal notation. Note that SBV will always print the whole value if it -- is precise (i.e., if it fits in a finite number of digits), regardless of the precision limit. The limit only applies if the representation -- of the real value is not finite, i.e., if it is not rational. -- -- The 'printBase' field can be used to print numbers in base 2, 10, or 16. If base 2 or 16 is used, then floating-point values will -- be printed in their internal memory-layout format as well, which can come in handy for bit-precise analysis. data SMTConfig = SMTConfig { verbose :: Bool -- ^ Debug mode , timing :: Bool -- ^ Print timing information on how long different phases took (construction, solving, etc.) , sBranchTimeOut :: Maybe Int -- ^ How much time to give to the solver for each call of 'sBranch' check. (In seconds. Default: No limit.) , timeOut :: Maybe Int -- ^ How much time to give to the solver. (In seconds. Default: No limit.) , printBase :: Int -- ^ Print integral literals in this base (2, 10, and 16 are supported.) , printRealPrec :: Int -- ^ Print algebraic real values with this precision. (SReal, default: 16) , solverTweaks :: [String] -- ^ Additional lines of script to give to the solver (user specified) , satCmd :: String -- ^ Usually "(check-sat)". However, users might tweak it based on solver characteristics. , smtFile :: Maybe FilePath -- ^ If Just, the generated SMT script will be put in this file (for debugging purposes mostly) , smtLibVersion :: SMTLibVersion -- ^ What version of SMT-lib we use for the tool , solver :: SMTSolver -- ^ The actual SMT solver. , roundingMode :: RoundingMode -- ^ Rounding mode to use for floating-point conversions , useLogic :: Maybe Logic -- ^ If Nothing, pick automatically. Otherwise, either use the given one, or use the custom string. } instance Show SMTConfig where show = show . solver -- | A model, as returned by a solver data SMTModel = SMTModel { modelAssocs :: [(String, CW)] -- ^ Mapping of symbolic values to constants. } deriving Show -- | The result of an SMT solver call. Each constructor is tagged with -- the 'SMTConfig' that created it so that further tools can inspect it -- and build layers of results, if needed. For ordinary uses of the library, -- this type should not be needed, instead use the accessor functions on -- it. (Custom Show instances and model extractors.) data SMTResult = Unsatisfiable SMTConfig -- ^ Unsatisfiable | Satisfiable SMTConfig SMTModel -- ^ Satisfiable with model | Unknown SMTConfig SMTModel -- ^ Prover returned unknown, with a potential (possibly bogus) model | ProofError SMTConfig [String] -- ^ Prover errored out | TimeOut SMTConfig -- ^ Computation timed out (see the 'timeout' combinator) -- | A script, to be passed to the solver. data SMTScript = SMTScript { scriptBody :: String -- ^ Initial feed , scriptModel :: Maybe String -- ^ Optional continuation script, if the result is sat } -- | An SMT engine type SMTEngine = SMTConfig -> Bool -> [(Quantifier, NamedSymVar)] -> [Either SW (SW, [SW])] -> String -> IO SMTResult -- | Solvers that SBV is aware of data Solver = Z3 | Yices | Boolector | CVC4 | MathSAT | ABC deriving (Show, Enum, Bounded) -- | An SMT solver data SMTSolver = SMTSolver { name :: Solver -- ^ The solver in use , executable :: String -- ^ The path to its executable , options :: [String] -- ^ Options to provide to the solver , engine :: SMTEngine -- ^ The solver engine, responsible for interpreting solver output , capabilities :: SolverCapabilities -- ^ Various capabilities of the solver } instance Show SMTSolver where show = show . name {-# ANN type FPOp ("HLint: ignore Use camelCase" :: String) #-}