----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Control.Query -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- Querying a solver interactively. ----------------------------------------------------------------------------- {-# LANGUAGE LambdaCase #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE Rank2Types #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Data.SBV.Control.Query ( send, ask, retrieveResponse , CheckSatResult(..), checkSat, checkSatUsing, checkSatAssuming, checkSatAssumingWithUnsatisfiableSet , getUnsatCore, getProof, getInterpolant, getAssignment, getOption, freshVar, freshVar_, freshArray, freshArray_, push, pop, getAssertionStackDepth , inNewAssertionStack, echo, caseSplit, resetAssertions, exit, getAssertions, getValue, getUninterpretedValue, getModel, getSMTResult , getLexicographicOptResults, getIndependentOptResults, getParetoOptResults, getAllSatResult, getUnknownReason , SMTOption(..), SMTInfoFlag(..), SMTErrorBehavior(..), SMTReasonUnknown(..), SMTInfoResponse(..), getInfo , Logic(..), Assignment(..) , ignoreExitCode, timeout , (|->) , mkSMTResult , io ) where import Control.Monad (unless, when, zipWithM) import Control.Monad.State.Lazy (get) import Data.IORef (readIORef) import qualified Data.Map.Strict as M import qualified Data.IntMap.Strict as IM import Data.Char (toLower) import Data.List (unzip3, intercalate, nubBy, sortBy) import Data.Maybe (listToMaybe, catMaybes) import Data.Function (on) import Data.SBV.Core.Data import Data.SBV.Core.Symbolic (QueryState(..), Query(..), SMTModel(..), SMTResult(..), State(..), incrementInternalCounter) import Data.SBV.Utils.SExpr import Data.SBV.Utils.Boolean import Data.SBV.Control.Types import Data.SBV.Control.Utils -- | An Assignment of a model binding data Assignment = Assign SVal CW -- Remove one pair of surrounding 'c's, if present noSurrounding :: Char -> String -> String noSurrounding c (c':cs@(_:_)) | c == c' && c == last cs = init cs noSurrounding _ s = s -- Remove a pair of surrounding quotes unQuote :: String -> String unQuote = noSurrounding '"' -- Remove a pair of surrounding bars unBar :: String -> String unBar = noSurrounding '|' -- Is this a string? If so, return it, otherwise fail in the Maybe monad. fromECon :: SExpr -> Maybe String fromECon (ECon s) = Just s fromECon _ = Nothing -- Collect strings appearing, used in 'getOption' only stringsOf :: SExpr -> [String] stringsOf (ECon s) = [s] stringsOf (ENum (i, _)) = [show i] stringsOf (EReal r) = [show r] stringsOf (EFloat f) = [show f] stringsOf (EDouble d) = [show d] stringsOf (EApp ss) = concatMap stringsOf ss -- Sort of a light-hearted show for SExprs, for better consumption at the user level. serialize :: Bool -> SExpr -> String serialize removeQuotes = go where go (ECon s) = if removeQuotes then unQuote s else s go (ENum (i, _)) = shNN i go (EReal r) = shNN r go (EFloat f) = shNN f go (EDouble d) = shNN d go (EApp [x]) = go x go (EApp ss) = "(" ++ unwords (map go ss) ++ ")" -- be careful with negative number printing in SMT-Lib.. shNN :: (Show a, Num a, Ord a) => a -> String shNN i | i < 0 = "(- " ++ show (-i) ++ ")" | True = show i -- | Ask solver for info. getInfo :: SMTInfoFlag -> Query SMTInfoResponse getInfo flag = do let cmd = "(get-info " ++ show flag ++ ")" bad = unexpected "getInfo" cmd "a valid get-info response" Nothing isAllStatistics AllStatistics = True isAllStatistics _ = False isAllStat = isAllStatistics flag grabAllStat k v = (render k, render v) -- we're trying to do our best to get key-value pairs here, but this -- is necessarily a half-hearted attempt. grabAllStats (EApp xs) = walk xs where walk [] = [] walk [t] = [grabAllStat t (ECon "")] walk (t : v : rest) = grabAllStat t v : walk rest grabAllStats o = [grabAllStat o (ECon "")] r <- ask cmd parse r bad $ \pe -> if isAllStat then return $ Resp_AllStatistics $ grabAllStats pe else case pe of ECon "unsupported" -> return Resp_Unsupported EApp [ECon ":assertion-stack-levels", ENum (i, _)] -> return $ Resp_AssertionStackLevels i EApp (ECon ":authors" : ns) -> return $ Resp_Authors (map render ns) EApp [ECon ":error-behavior", ECon "immediate-exit"] -> return $ Resp_Error ErrorImmediateExit EApp [ECon ":error-behavior", ECon "continued-execution"] -> return $ Resp_Error ErrorContinuedExecution EApp (ECon ":name" : o) -> return $ Resp_Name (render (EApp o)) EApp (ECon ":reason-unknown" : o) -> return $ Resp_ReasonUnknown (unk o) EApp (ECon ":version" : o) -> return $ Resp_Version (render (EApp o)) EApp (ECon s : o) -> return $ Resp_InfoKeyword s (map render o) _ -> bad r Nothing where render = serialize True unk [ECon s] | Just d <- getUR s = d unk o = UnknownOther (render (EApp o)) getUR s = map toLower (unQuote s) `lookup` [(map toLower k, d) | (k, d) <- unknownReasons] -- As specified in Section 4.1 of the SMTLib document. Note that we're adding the -- extra timeout as it is useful in this context. unknownReasons = [ ("memout", UnknownMemOut) , ("incomplete", UnknownIncomplete) , ("timeout", UnknownTimeOut) ] -- | Retrieve the value of an 'SMTOption.' The curious function argument is on purpose here, -- simply pass the constructor name. Example: the call @'getOption' 'ProduceUnsatCores'@ will return -- either @Nothing@ or @Just (ProduceUnsatCores True)@ or @Just (ProduceUnsatCores False)@. -- -- Result will be 'Nothing' if the solver does not support this option. getOption :: (a -> SMTOption) -> Query (Maybe SMTOption) getOption f = case f undefined of DiagnosticOutputChannel{} -> askFor "DiagnosticOutputChannel" ":diagnostic-output-channel" $ string DiagnosticOutputChannel ProduceAssertions{} -> askFor "ProduceAssertions" ":produce-assertions" $ bool ProduceAssertions ProduceAssignments{} -> askFor "ProduceAssignments" ":produce-assignments" $ bool ProduceAssignments ProduceProofs{} -> askFor "ProduceProofs" ":produce-proofs" $ bool ProduceProofs ProduceInterpolants{} -> askFor "ProduceInterpolants" ":produce-interpolants" $ bool ProduceInterpolants ProduceUnsatAssumptions{} -> askFor "ProduceUnsatAssumptions" ":produce-unsat-assumptions" $ bool ProduceUnsatAssumptions ProduceUnsatCores{} -> askFor "ProduceUnsatCores" ":produce-unsat-cores" $ bool ProduceUnsatCores RandomSeed{} -> askFor "RandomSeed" ":random-seed" $ integer RandomSeed ReproducibleResourceLimit{} -> askFor "ReproducibleResourceLimit" ":reproducible-resource-limit" $ integer ReproducibleResourceLimit SMTVerbosity{} -> askFor "SMTVerbosity" ":verbosity" $ integer SMTVerbosity OptionKeyword nm _ -> askFor ("OptionKeyword" ++ nm) nm $ stringList (OptionKeyword nm) SetLogic{} -> error "Data.SBV.Query: SMTLib does not allow querying value of the logic!" -- Not to be confused by getInfo, which is totally irrelevant! SetInfo{} -> error "Data.SBV.Query: SMTLib does not allow querying value of meta-info!" where askFor sbvName smtLibName continue = do let cmd = "(get-option " ++ smtLibName ++ ")" bad = unexpected ("getOption " ++ sbvName) cmd "a valid option value" Nothing r <- ask cmd parse r bad $ \case ECon "unsupported" -> return Nothing e -> continue e (bad r) string c (ECon s) _ = return $ Just $ c s string _ e k = k $ Just ["Expected string, but got: " ++ show (serialize False e)] bool c (ENum (0, _)) _ = return $ Just $ c False bool c (ENum (1, _)) _ = return $ Just $ c True bool _ e k = k $ Just ["Expected boolean, but got: " ++ show (serialize False e)] integer c (ENum (i, _)) _ = return $ Just $ c i integer _ e k = k $ Just ["Expected integer, but got: " ++ show (serialize False e)] -- free format, really stringList c e _ = return $ Just $ c $ stringsOf e -- | Get the reason unknown. Only internally used. getUnknownReason :: Query SMTReasonUnknown getUnknownReason = do ru <- getInfo ReasonUnknown case ru of Resp_Unsupported -> return $ UnknownOther "Solver responded: Unsupported." Resp_ReasonUnknown r -> return r -- Shouldn't happen, but just in case: _ -> error $ "Unexpected reason value received: " ++ show ru -- | Issue check-sat and get an SMT Result out. getSMTResult :: Query SMTResult getSMTResult = do cfg <- getConfig cs <- checkSat case cs of Unsat -> Unsatisfiable cfg <$> getUnsatCoreIfRequested Sat -> Satisfiable cfg <$> getModel Unk -> Unknown cfg <$> getUnknownReason -- | Classify a model based on whether it has unbound objectives or not. classifyModel :: SMTConfig -> SMTModel -> SMTResult classifyModel cfg m = case filter (not . isRegularCW . snd) (modelObjectives m) of [] -> Satisfiable cfg m _ -> SatExtField cfg m -- | Issue check-sat and get results of a lexicographic optimization. getLexicographicOptResults :: Query SMTResult getLexicographicOptResults = do cfg <- getConfig cs <- checkSat case cs of Unsat -> Unsatisfiable cfg <$> getUnsatCoreIfRequested Sat -> classifyModel cfg <$> getModelWithObjectives Unk -> Unknown cfg <$> getUnknownReason where getModelWithObjectives = do objectiveValues <- getObjectiveValues m <- getModel return m {modelObjectives = objectiveValues} -- | Issue check-sat and get results of an independent (boxed) optimization. getIndependentOptResults :: [String] -> Query [(String, SMTResult)] getIndependentOptResults objNames = do cfg <- getConfig cs <- checkSat case cs of Unsat -> getUnsatCoreIfRequested >>= \mbUC -> return [(nm, Unsatisfiable cfg mbUC) | nm <- objNames] Sat -> continue (classifyModel cfg) Unk -> do ur <- Unknown cfg <$> getUnknownReason return [(nm, ur) | nm <- objNames] where continue classify = do objectiveValues <- getObjectiveValues nms <- zipWithM getIndependentResult [0..] objNames return [(n, classify (m {modelObjectives = objectiveValues})) | (n, m) <- nms] getIndependentResult :: Int -> String -> Query (String, SMTModel) getIndependentResult i s = do m <- getModelAtIndex (Just i) return (s, m) -- | Construct a pareto-front optimization result getParetoOptResults :: Maybe Int -> Query (Bool, [SMTResult]) getParetoOptResults (Just i) | i <= 0 = return (True, []) getParetoOptResults mbN = do cfg <- getConfig cs <- checkSat case cs of Unsat -> return (False, []) Sat -> continue (classifyModel cfg) Unk -> do ur <- getUnknownReason return (False, [ProofError cfg [show ur]]) where continue classify = do m <- getModel (limReached, fronts) <- getParetoFronts (subtract 1 <$> mbN) [m] return (limReached, reverse (map classify fronts)) getParetoFronts :: Maybe Int -> [SMTModel] -> Query (Bool, [SMTModel]) getParetoFronts (Just i) sofar | i <= 0 = return (True, sofar) getParetoFronts mbi sofar = do cs <- checkSat let more = getModel >>= \m -> getParetoFronts (subtract 1 <$> mbi) (m : sofar) case cs of Unsat -> return (False, sofar) Sat -> more Unk -> more -- | Collect model values. It is implicitly assumed that we are in a check-sat -- context. See 'getSMTResult' for a variant that issues a check-sat first and -- returns an 'SMTResult'. getModel :: Query SMTModel getModel = getModelAtIndex Nothing -- | Get a model stored at an index. This is likely very Z3 specific! getModelAtIndex :: Maybe Int -> Query SMTModel getModelAtIndex mbi = do State{runMode} <- get cfg <- getConfig inps <- getQuantifiedInputs obsvs <- getObservables rm <- io $ readIORef runMode let vars :: [NamedSymVar] vars = case rm of m@CodeGen -> error $ "SBV.getModel: Model is not available in mode: " ++ show m m@Concrete -> error $ "SBV.getModel: Model is not available in mode: " ++ show m SMTMode _ isSAT _ -> -- for "sat", display the prefix existentials. for "proof", display the prefix universals let allModelInputs = if isSAT then takeWhile ((/= ALL) . fst) inps else takeWhile ((== ALL) . fst) inps -- are we inside a quantifier insideQuantifier = length allModelInputs < length inps -- observables are only meaningful if we're not in a quantified context allPrefixObservables | insideQuantifier = [] | True = [(EX, (sw, nm)) | (nm, sw) <- obsvs] sortByNodeId :: [NamedSymVar] -> [NamedSymVar] sortByNodeId = sortBy (compare `on` (\(SW _ n, _) -> n)) in sortByNodeId [nv | (_, nv@(_, n)) <- allModelInputs ++ allPrefixObservables, not (isNonModelVar cfg n)] assocs <- mapM (\(sw, n) -> (n, ) <$> getValueCW mbi sw) vars return SMTModel { modelObjectives = [] , modelAssocs = assocs } -- | Just after a check-sat is issued, collect objective values. Used -- internally only, not exposed to the user. getObjectiveValues :: Query [(String, GeneralizedCW)] getObjectiveValues = do let cmd = "(get-objectives)" bad = unexpected "getObjectiveValues" cmd "a list of objective values" Nothing r <- ask cmd inputs <- map snd <$> getQuantifiedInputs parse r bad $ \case EApp (ECon "objectives" : es) -> catMaybes <$> mapM (getObjValue (bad r) inputs) es _ -> bad r Nothing where -- | Parse an objective value out. getObjValue :: (forall a. Maybe [String] -> Query a) -> [NamedSymVar] -> SExpr -> Query (Maybe (String, GeneralizedCW)) getObjValue bailOut inputs expr = case expr of EApp [_] -> return Nothing -- Happens when a soft-assertion has no associated group. EApp [ECon nm, v] -> locate nm v -- Regular case EApp [EApp [ECon "bvadd", ECon nm, ENum _], v] -> locate nm v -- Happens when we "adjust" a signed-bounded objective _ -> dontUnderstand (show expr) where locate nm v = case listToMaybe [p | p@(sw, _) <- inputs, show sw == nm] of Nothing -> return Nothing -- Happens when the soft assertion has a group-id that's not one of the input names Just (sw, actualName) -> grab sw v >>= \val -> return $ Just (actualName, val) dontUnderstand s = bailOut $ Just [ "Unable to understand solver output." , "While trying to process: " ++ s ] grab :: SW -> SExpr -> Query GeneralizedCW grab s topExpr | Just v <- recoverKindedValue k topExpr = return $ RegularCW v | True = ExtendedCW <$> cvt (simplify topExpr) where k = kindOf s -- Convert to an extended expression. Hopefully complete! cvt :: SExpr -> Query ExtCW cvt (ECon "oo") = return $ Infinite k cvt (ECon "epsilon") = return $ Epsilon k cvt (EApp [ECon "interval", x, y]) = Interval <$> cvt x <*> cvt y cvt (ENum (i, _)) = return $ BoundedCW $ mkConstCW k i cvt (EReal r) = return $ BoundedCW $ CW k $ CWAlgReal r cvt (EFloat f) = return $ BoundedCW $ CW k $ CWFloat f cvt (EDouble d) = return $ BoundedCW $ CW k $ CWDouble d cvt (EApp [ECon "+", x, y]) = AddExtCW <$> cvt x <*> cvt y cvt (EApp [ECon "*", x, y]) = MulExtCW <$> cvt x <*> cvt y -- Nothing else should show up, hopefully! cvt e = dontUnderstand (show e) -- drop the pesky to_real's that Z3 produces.. Cool but useless. simplify :: SExpr -> SExpr simplify (EApp [ECon "to_real", n]) = n simplify (EApp xs) = EApp (map simplify xs) simplify e = e -- | Check for satisfiability, under the given conditions. Similar to 'Data.SBV.Control.checkSat' except it allows making -- further assumptions as captured by the first argument of booleans. (Also see 'checkSatAssumingWithUnsatisfiableSet' -- for a variant that returns the subset of the given assumptions that led to the 'Unsat' conclusion.) checkSatAssuming :: [SBool] -> Query CheckSatResult checkSatAssuming sBools = fst <$> checkSatAssumingHelper False sBools -- | Check for satisfiability, under the given conditions. Returns the unsatisfiable -- set of assumptions. Similar to 'Data.SBV.Control.checkSat' except it allows making further assumptions -- as captured by the first argument of booleans. If the result is 'Unsat', the user will -- also receive a subset of the given assumptions that led to the 'Unsat' conclusion. Note -- that while this set will be a subset of the inputs, it is not necessarily guaranteed to be minimal. -- -- You must have arranged for the production of unsat assumptions -- first via -- -- @ -- 'setOption' $ 'ProduceUnsatAssumptions' 'True' -- @ -- -- for this call to not error out! -- -- Usage note: 'getUnsatCore' is usually easier to use than 'checkSatAssumingWithUnsatisfiableSet', as it -- allows the use of named assertions, as obtained by 'namedConstraint'. If 'getUnsatCore' -- fills your needs, you should definitely prefer it over 'checkSatAssumingWithUnsatisfiableSet'. checkSatAssumingWithUnsatisfiableSet :: [SBool] -> Query (CheckSatResult, Maybe [SBool]) checkSatAssumingWithUnsatisfiableSet = checkSatAssumingHelper True -- | Helper for the two variants of checkSatAssuming we have. Internal only. checkSatAssumingHelper :: Bool -> [SBool] -> Query (CheckSatResult, Maybe [SBool]) checkSatAssumingHelper getAssumptions sBools = do -- sigh.. SMT-Lib requires the values to be literals only. So, create proxies. let mkAssumption st = do swsOriginal <- mapM (\sb -> do sw <- sbvToSW st sb return (sw, sb)) sBools -- drop duplicates and trues let swbs = [p | p@(sw, _) <- nubBy ((==) `on` fst) swsOriginal, sw /= trueSW] -- get a unique proxy name for each uniqueSWBs <- mapM (\(sw, sb) -> do unique <- incrementInternalCounter st return (sw, (unique, sb))) swbs let translate (sw, (unique, sb)) = (nm, decls, (proxy, sb)) where nm = show sw proxy = "__assumption_proxy_" ++ nm ++ "_" ++ show unique decls = [ "(declare-const " ++ proxy ++ " Bool)" , "(assert (= " ++ proxy ++ " " ++ nm ++ "))" ] return $ map translate uniqueSWBs assumptions <- inNewContext mkAssumption let (origNames, declss, proxyMap) = unzip3 assumptions let cmd = "(check-sat-assuming (" ++ unwords (map fst proxyMap) ++ "))" bad = unexpected "checkSatAssuming" cmd "one of sat/unsat/unknown" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceUnsatAssumptions True" , "" , "to tell the solver to produce unsat assumptions." ] mapM_ (send True) $ concat declss r <- ask cmd let grabUnsat | getAssumptions = do as <- getUnsatAssumptions origNames proxyMap return (Unsat, Just as) | True = return (Unsat, Nothing) parse r bad $ \case ECon "sat" -> return (Sat, Nothing) ECon "unsat" -> grabUnsat ECon "unknown" -> return (Unk, Nothing) _ -> bad r Nothing -- | The current assertion stack depth, i.e., #push - #pops after start. Always non-negative. getAssertionStackDepth :: Query Int getAssertionStackDepth = queryAssertionStackDepth <$> getQueryState -- | Upon a pop, we need to restore all arrays and tables. See: http://github.com/LeventErkok/sbv/issues/374 restoreTablesAndArrays :: Query () restoreTablesAndArrays = do st <- get qs <- getQueryState case queryTblArrPreserveIndex qs of Nothing -> return () Just (tc, ac) -> do tCount <- M.size <$> (io . readIORef) (rtblMap st) aCount <- IM.size <$> (io . readIORef) (rArrayMap st) let tInits = [ "table" ++ show i ++ "_initializer" | i <- [tc .. tCount - 1]] aInits = [ "array_" ++ show i ++ "_initializer" | i <- [ac .. aCount - 1]] inits = tInits ++ aInits case inits of [] -> return () -- Nothing to do [x] -> send True $ "(assert " ++ x ++ ")" xs -> send True $ "(assert (and " ++ unwords xs ++ "))" -- | Upon a push, record the cut-off point for table and array restoration, if we haven't already recordTablesAndArrayCutOff :: Query () recordTablesAndArrayCutOff = do st <- get qs <- getQueryState case queryTblArrPreserveIndex qs of Just _ -> return () -- already recorded, nothing to do Nothing -> do tCount <- M.size <$> (io . readIORef) (rtblMap st) aCount <- IM.size <$> (io . readIORef) (rArrayMap st) modifyQueryState $ \s -> s {queryTblArrPreserveIndex = Just (tCount, aCount)} -- | Run the query in a new assertion stack. That is, we push the context, run the query -- commands, and pop it back. inNewAssertionStack :: Query a -> Query a inNewAssertionStack q = do push 1 r <- q pop 1 return r -- | Push the context, entering a new one. Pushes multiple levels if /n/ > 1. push :: Int -> Query () push i | i <= 0 = error $ "Data.SBV: push requires a strictly positive level argument, received: " ++ show i | True = do depth <- getAssertionStackDepth send True $ "(push " ++ show i ++ ")" recordTablesAndArrayCutOff modifyQueryState $ \s -> s{queryAssertionStackDepth = depth + i} -- | Pop the context, exiting a new one. Pops multiple levels if /n/ > 1. It's an error to pop levels that don't exist. pop :: Int -> Query () pop i | i <= 0 = error $ "Data.SBV: pop requires a strictly positive level argument, received: " ++ show i | True = do depth <- getAssertionStackDepth if i > depth then error $ "Data.SBV: Illegally trying to pop " ++ shl i ++ ", at current level: " ++ show depth else do QueryState{queryConfig} <- getQueryState if not (supportsGlobalDecls (capabilities (solver queryConfig))) then error $ unlines [ "" , "*** Data.SBV: Backend solver does not support global-declarations." , "*** Hence, calls to 'pop' are not supported." , "***" , "*** Request this as a feature for the underlying solver!" ] else do send True $ "(pop " ++ show i ++ ")" restoreTablesAndArrays modifyQueryState $ \s -> s{queryAssertionStackDepth = depth - i} where shl 1 = "one level" shl n = show n ++ " levels" -- | Search for a result via a sequence of case-splits, guided by the user. If one of -- the conditions lead to a satisfiable result, returns @Just@ that result. If none of them -- do, returns @Nothing@. Note that we automatically generate a coverage case and search -- for it automatically as well. In that latter case, the string returned will be "Coverage". -- The first argument controls printing progress messages See "Documentation.SBV.Examples.Queries.CaseSplit" -- for an example use case. caseSplit :: Bool -> [(String, SBool)] -> Query (Maybe (String, SMTResult)) caseSplit printCases cases = do cfg <- getConfig go cfg (cases ++ [("Coverage", bnot (bOr (map snd cases)))]) where msg = when printCases . io . putStrLn go _ [] = return Nothing go cfg ((n,c):ncs) = do let notify s = msg $ "Case " ++ n ++ ": " ++ s notify "Starting" r <- checkSatAssuming [c] case r of Unsat -> do notify "Unsatisfiable" go cfg ncs Sat -> do notify "Satisfiable" res <- Satisfiable cfg <$> getModel return $ Just (n, res) Unk -> do notify "Unknown" res <- Unknown cfg <$> getUnknownReason return $ Just (n, res) -- | Reset the solver, by forgetting all the assertions. However, bindings are kept as is, -- as opposed to a full reset of the solver. Use this variant to clean-up the solver -- state while leaving the bindings intact. Pops all assertion levels. Declarations and -- definitions resulting from the 'Data.SBV.setLogic' command are unaffected. Note that SBV -- implicitly uses global-declarations, so bindings will remain intact. resetAssertions :: Query () resetAssertions = do send True "(reset-assertions)" modifyQueryState $ \s -> s{queryAssertionStackDepth = 0} -- | Echo a string. Note that the echoing is done by the solver, not by SBV. echo :: String -> Query () echo s = do let cmd = "(echo \"" ++ concatMap sanitize s ++ "\")" -- we send the command, but otherwise ignore the response -- note that 'send True/False' would be incorrect here. 'send True' would -- require a success response. 'send False' would fail to consume the -- output. But 'ask' does the right thing! It gets "some" response, -- and forgets about it immediately. _ <- ask cmd return () where sanitize '"' = "\"\"" -- quotes need to be duplicated sanitize c = [c] -- | Exit the solver. This action will cause the solver to terminate. Needless to say, -- trying to communicate with the solver after issuing "exit" will simply fail. exit :: Query () exit = do send True "(exit)" modifyQueryState $ \s -> s{queryAssertionStackDepth = 0} -- | Retrieve the unsat-core. Note you must have arranged for -- unsat cores to be produced first via -- -- @ -- 'setOption' $ 'ProduceUnsatCores' 'True' -- @ -- -- for this call to not error out! -- -- NB. There is no notion of a minimal unsat-core, in case unsatisfiability can be derived -- in multiple ways. Furthermore, Z3 does not guarantee that the generated unsat -- core does not have any redundant assertions either, as doing so can incur a performance penalty. -- (There might be assertions in the set that is not needed.) To ensure all the assertions -- in the core are relevant, use: -- -- @ -- 'setOption' $ 'OptionKeyword' ":smt.core.minimize" ["true"] -- @ -- -- Note that this only works with Z3. getUnsatCore :: Query [String] getUnsatCore = do let cmd = "(get-unsat-core)" bad = unexpected "getUnsatCore" cmd "an unsat-core response" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceUnsatCores True" , "" , "so the solver will be ready to compute unsat cores," , "and that there is a model by first issuing a 'checkSat' call." , "" , "If using z3, you might also optionally want to set:" , "" , " setOption $ OptionKeyword \":smt.core.minimize\" [\"true\"]" , "" , "to make sure the unsat core doesn't have irrelevant entries," , "though this might incur a performance penalty." ] r <- ask cmd parse r bad $ \case EApp es | Just xs <- mapM fromECon es -> return $ map unBar xs _ -> bad r Nothing -- | Retrieve the unsat core if it was asked for in the configuration getUnsatCoreIfRequested :: Query (Maybe [String]) getUnsatCoreIfRequested = do cfg <- getConfig if or [b | ProduceUnsatCores b <- solverSetOptions cfg] then Just <$> getUnsatCore else return Nothing -- | Retrieve the proof. Note you must have arranged for -- proofs to be produced first via -- -- @ -- 'setOption' $ 'ProduceProofs' 'True' -- @ -- -- for this call to not error out! -- -- A proof is simply a 'String', as returned by the solver. In the future, SBV might -- provide a better datatype, depending on the use cases. Please get in touch if you -- use this function and can suggest a better API. getProof :: Query String getProof = do let cmd = "(get-proof)" bad = unexpected "getProof" cmd "a get-proof response" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceProofs True" , "" , "to make sure the solver is ready for producing proofs," , "and that there is a proof by first issuing a 'checkSat' call." ] r <- ask cmd -- we only care about the fact that we can parse the output, so the -- result of parsing is ignored. parse r bad $ \_ -> return r -- | Retrieve an interpolant after an 'Unsat' result is obtained. Note you must have arranged for -- interpolants to be produced first via -- -- @ -- 'setOption' $ 'ProduceInterpolants' 'True' -- @ -- -- for this call to not error out! -- -- To get an interpolant for a pair of formulas @A@ and @B@, use a 'constrainWithAttribute' call to attach -- interplation groups to @A@ and @B@. Then call 'getInterpolant' @[\"A\"]@, assuming those are the names -- you gave to the formulas in the @A@ group. -- -- An interpolant for @A@ and @B@ is a formula @I@ such that: -- -- @ -- A ==> I -- and B ==> not I -- @ -- -- That is, it's evidence that @A@ and @B@ cannot be true together -- since @A@ implies @I@ but @B@ implies @not I@; establishing that @A@ and @B@ cannot -- be satisfied at the same time. Furthermore, @I@ will have only the symbols that are common -- to @A@ and @B@. -- -- N.B. As of Z3 version 4.8.0; Z3 no longer supports interpolants. Use the MathSAT backend for extracting -- interpolants. See "Documentation.SBV.Examples.Queries.Interpolants" for an example. getInterpolant :: [String] -> Query String getInterpolant fs | null fs = error "SBV.getInterpolant requires at least one marked constraint, received none!" | True = do let bar s = '|' : s ++ "|" cmd = "(get-interpolant (" ++ unwords (map bar fs) ++ "))" bad = unexpected "getInterpolant" cmd "a get-interpolant response" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceInterpolants True" , "" , "to make sure the solver is ready for producing interpolants," , "and that you have used the proper attributes using the" , "constrainWithAttribute function." ] r <- ask cmd parse r bad $ \e -> return $ serialize False e -- | Retrieve assertions. Note you must have arranged for -- assertions to be available first via -- -- @ -- 'setOption' $ 'ProduceAssertions' 'True' -- @ -- -- for this call to not error out! -- -- Note that the set of assertions returned is merely a list of strings, just like the -- case for 'getProof'. In the future, SBV might provide a better datatype, depending -- on the use cases. Please get in touch if you use this function and can suggest -- a better API. getAssertions :: Query [String] getAssertions = do let cmd = "(get-assertions)" bad = unexpected "getAssertions" cmd "a get-assertions response" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceAssertions True" , "" , "to make sure the solver is ready for producing assertions." ] render = serialize False r <- ask cmd parse r bad $ \pe -> case pe of EApp xs -> return $ map render xs _ -> return [render pe] -- | Retrieve the assignment. This is a lightweight version of 'getValue', where the -- solver returns the truth value for all named subterms of type 'Bool'. -- -- You must have first arranged for assignments to be produced via -- -- @ -- 'setOption' $ 'ProduceAssignments' 'True' -- @ -- -- for this call to not error out! getAssignment :: Query [(String, Bool)] getAssignment = do let cmd = "(get-assignment)" bad = unexpected "getAssignment" cmd "a get-assignment response" $ Just [ "Make sure you use:" , "" , " setOption $ ProduceAssignments True" , "" , "to make sure the solver is ready for producing assignments," , "and that there is a model by first issuing a 'checkSat' call." ] -- we're expecting boolean assignment to labels, essentially grab (EApp [ECon s, ENum (0, _)]) = Just (unQuote s, False) grab (EApp [ECon s, ENum (1, _)]) = Just (unQuote s, True) grab _ = Nothing r <- ask cmd parse r bad $ \case EApp ps | Just vs <- mapM grab ps -> return vs _ -> bad r Nothing -- | Make an assignment. The type 'Assignment' is abstract, the result is typically passed -- to 'mkSMTResult': -- -- @ mkSMTResult [ a |-> 332 -- , b |-> 2.3 -- , c |-> True -- ] -- @ -- -- End users should use 'getModel' for automatically constructing models from the current solver state. -- However, an explicit 'Assignment' might be handy in complex scenarios where a model needs to be -- created manually. infix 1 |-> (|->) :: SymWord a => SBV a -> a -> Assignment SBV a |-> v = case literal v of SBV (SVal _ (Left cw)) -> Assign a cw r -> error $ "Data.SBV: Impossible happened in |->: Cannot construct a CW with literal: " ++ show r -- | Produce the query result from an assignment. mkSMTResult :: [Assignment] -> Query SMTResult mkSMTResult asgns = do QueryState{queryConfig} <- getQueryState inps <- getQuantifiedInputs let grabValues st = do let extract (Assign s n) = sbvToSW st (SBV s) >>= \sw -> return (sw, n) modelAssignment <- mapM extract asgns -- sanity checks -- - All existentials should be given a value -- - No duplicates -- - No bindings to vars that are not inputs let userSS = map fst modelAssignment missing, extra, dup :: [String] missing = [n | (EX, (s, n)) <- inps, s `notElem` userSS] extra = [show s | s <- userSS, s `notElem` map (fst . snd) inps] dup = let walk [] = [] walk (n:ns) | n `elem` ns = show n : walk (filter (/= n) ns) | True = walk ns in walk userSS unless (null (missing ++ extra ++ dup)) $ do let misTag = "*** Missing inputs" dupTag = "*** Duplicate bindings" extTag = "*** Extra bindings" maxLen = maximum $ 0 : [length misTag | not (null missing)] ++ [length extTag | not (null extra)] ++ [length dupTag | not (null dup)] align s = s ++ replicate (maxLen - length s) ' ' ++ ": " error $ unlines $ ["" , "*** Data.SBV: Query model construction has a faulty assignment." , "***" ] ++ [ align misTag ++ intercalate ", " missing | not (null missing)] ++ [ align extTag ++ intercalate ", " extra | not (null extra) ] ++ [ align dupTag ++ intercalate ", " dup | not (null dup) ] ++ [ "***" , "*** Data.SBV: Check your query result construction!" ] let findName s = case [nm | (_, (i, nm)) <- inps, s == i] of [nm] -> nm [] -> error "*** Data.SBV: Impossible happened: Cannot find " ++ show s ++ " in the input list" nms -> error $ unlines [ "" , "*** Data.SBV: Impossible happened: Multiple matches for: " ++ show s , "*** Candidates: " ++ unwords nms ] return [(findName s, n) | (s, n) <- modelAssignment] assocs <- inNewContext grabValues let m = SMTModel { modelObjectives = [] , modelAssocs = assocs } return $ Satisfiable queryConfig m