----------------------------------------------------------------------------- -- | -- Module : Data.SBV.List.Bounded -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- A collection of bounded list utilities, useful when working with symbolic lists. -- These functions all take a concrete bound, and operate on the prefix of a symbolic -- list that is at most that long. Due to limitations on writing recursive functions -- over lists (the classic symbolic termination problem), we cannot write arbitrary -- recursive programs on symbolic lists. But most of the time all we need is a -- bounded prefix of this list, at which point these functions come in handy. ----------------------------------------------------------------------------- -- {-# LANGUAGE OverloadedLists #-} module Data.SBV.List.Bounded ( -- * General folds bfoldr, bfoldl -- * Map, filter, zipWith, elem , bmap, bfilter, bzipWith, belem -- * Aggregates , bsum, bprod, band, bor, bany, ball, bmaximum, bminimum ) where import Data.SBV import Data.SBV.List ((.:)) import qualified Data.SBV.List as L -- | Case analysis on a symbolic list. (Not exported.) lcase :: (SymWord a, Mergeable b) => SList a -> b -> (SBV a -> SList a -> b) -> b lcase s e c = ite (L.null s) e (c (L.head s) (L.tail s)) -- | Bounded fold from the right. bfoldr :: (SymWord a, SymWord b) => Int -> (SBV a -> SBV b -> SBV b) -> SBV b -> SList a -> SBV b bfoldr cnt f b = go (cnt `max` 0) where go 0 _ = b go i s = lcase s b (\h t -> h `f` go (i-1) t) -- | Bounded fold from the left. bfoldl :: (SymWord a, SymWord b) => Int -> (SBV b -> SBV a -> SBV b) -> SBV b -> SList a -> SBV b bfoldl cnt f = go (cnt `max` 0) where go 0 b _ = b go i b s = lcase s b (\h t -> go (i-1) (b `f` h) t) -- | Bounded sum. bsum :: (SymWord a, Num a) => Int -> SList a -> SBV a bsum i = bfoldl i (+) 0 -- | Bounded product. bprod :: (SymWord a, Num a) => Int -> SList a -> SBV a bprod i = bfoldl i (*) 1 -- | Bounded map. bmap :: (SymWord a, SymWord b) => Int -> (SBV a -> SBV b) -> SList a -> SList b bmap i f = bfoldr i (\x -> (f x .:)) [] -- | Bounded filter. bfilter :: SymWord a => Int -> (SBV a -> SBool) -> SList a -> SList a bfilter i f = bfoldr i (\x y -> ite (f x) (x .: y) y) [] -- | Bounded logical and band :: Int -> SList Bool -> SBool band i = bfoldr i (&&&) (true :: SBool) -- | Bounded logical or bor :: Int -> SList Bool -> SBool bor i = bfoldr i (|||) (false :: SBool) -- | Bounded any bany :: SymWord a => Int -> (SBV a -> SBool) -> SList a -> SBool bany i f = bor i . bmap i f -- | Bounded all ball :: SymWord a => Int -> (SBV a -> SBool) -> SList a -> SBool ball i f = band i . bmap i f -- | Bounded maximum. Undefined if list is empty. bmaximum :: (SymWord a, Num a) => Int -> SList a -> SBV a bmaximum i l = bfoldl (i-1) smax (L.head l) (L.tail l) -- | Bounded minimum. Undefined if list is empty. bminimum :: (SymWord a, Num a) => Int -> SList a -> SBV a bminimum i l = bfoldl (i-1) smin (L.head l) (L.tail l) -- | Bounded zipWith bzipWith :: (SymWord a, SymWord b, SymWord c) => Int -> (SBV a -> SBV b -> SBV c) -> SList a -> SList b -> SList c bzipWith cnt f = go (cnt `max` 0) where go 0 _ _ = [] go i xs ys = ite (L.null xs ||| L.null ys) [] (f (L.head xs) (L.head ys) .: go (i-1) (L.tail xs) (L.tail ys)) -- | Bounded element check belem :: SymWord a => Int -> SBV a -> SList a -> SBool belem i e = bany i (e .==)