----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Core.Data -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Internal data-structures for the sbv library ----------------------------------------------------------------------------- {-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -Wall -Werror #-} module Data.SBV.Core.Data ( SBool, SWord8, SWord16, SWord32, SWord64 , SInt8, SInt16, SInt32, SInt64, SInteger, SReal, SFloat, SDouble, SChar, SString, SList , SEither, SMaybe , STuple, STuple2, STuple3, STuple4, STuple5, STuple6, STuple7, STuple8 , RCSet(..), SSet , nan, infinity, sNaN, sInfinity, RoundingMode(..), SRoundingMode , sRoundNearestTiesToEven, sRoundNearestTiesToAway, sRoundTowardPositive, sRoundTowardNegative, sRoundTowardZero , sRNE, sRNA, sRTP, sRTN, sRTZ , SymVal(..) , CV(..), CVal(..), AlgReal(..), AlgRealPoly(..), ExtCV(..), GeneralizedCV(..), isRegularCV, cvSameType, cvToBool , mkConstCV ,liftCV2, mapCV, mapCV2 , SV(..), trueSV, falseSV, trueCV, falseCV, normCV , SVal(..) , sTrue, sFalse, sNot, (.&&), (.||), (.<+>), (.~&), (.~|), (.=>), (.<=>), sAnd, sOr, sAny, sAll, fromBool , SBV(..), NodeId(..), mkSymSBV , ArrayContext(..), ArrayInfo, SymArray(..), SFunArray(..), SArray(..) , sbvToSV, sbvToSymSV, forceSVArg , SBVExpr(..), newExpr , cache, Cached, uncache, uncacheAI, HasKind(..) , Op(..), PBOp(..), FPOp(..), StrOp(..), SeqOp(..), RegExp(..), NamedSymVar, getTableIndex , SBVPgm(..), Symbolic, runSymbolic, State, getPathCondition, extendPathCondition , inSMTMode, SBVRunMode(..), Kind(..), Outputtable(..), Result(..) , SolverContext(..), internalVariable, internalConstraint, isCodeGenMode , SBVType(..), newUninterpreted, addAxiom , Quantifier(..), needsExistentials , SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension, smtLibReservedNames , SolverCapabilities(..) , extractSymbolicSimulationState , SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..) , OptimizeStyle(..), Penalty(..), Objective(..) , QueryState(..), QueryT(..), SMTProblem(..) ) where import GHC.Generics (Generic) import GHC.Exts (IsList(..)) import Control.DeepSeq (NFData(..)) import Control.Monad.Trans (liftIO) import Data.Int (Int8, Int16, Int32, Int64) import Data.Word (Word8, Word16, Word32, Word64) import Data.List (elemIndex) import Data.Maybe (fromMaybe) import Data.Proxy import Data.Typeable (Typeable) import qualified Data.Generics as G (Data(..)) import System.Random import Data.SBV.Core.AlgReals import Data.SBV.Core.Kind import Data.SBV.Core.Concrete import Data.SBV.Core.Symbolic import Data.SBV.Core.Operations import Data.SBV.Control.Types import Data.SBV.SMT.SMTLibNames import Data.SBV.Utils.Lib -- | Get the current path condition getPathCondition :: State -> SBool getPathCondition st = SBV (getSValPathCondition st) -- | Extend the path condition with the given test value. extendPathCondition :: State -> (SBool -> SBool) -> State extendPathCondition st f = extendSValPathCondition st (unSBV . f . SBV) -- | The "Symbolic" value. The parameter @a@ is phantom, but is -- extremely important in keeping the user interface strongly typed. newtype SBV a = SBV { unSBV :: SVal } deriving (Generic, NFData) -- | A symbolic boolean/bit type SBool = SBV Bool -- | 8-bit unsigned symbolic value type SWord8 = SBV Word8 -- | 16-bit unsigned symbolic value type SWord16 = SBV Word16 -- | 32-bit unsigned symbolic value type SWord32 = SBV Word32 -- | 64-bit unsigned symbolic value type SWord64 = SBV Word64 -- | 8-bit signed symbolic value, 2's complement representation type SInt8 = SBV Int8 -- | 16-bit signed symbolic value, 2's complement representation type SInt16 = SBV Int16 -- | 32-bit signed symbolic value, 2's complement representation type SInt32 = SBV Int32 -- | 64-bit signed symbolic value, 2's complement representation type SInt64 = SBV Int64 -- | Infinite precision signed symbolic value type SInteger = SBV Integer -- | Infinite precision symbolic algebraic real value type SReal = SBV AlgReal -- | IEEE-754 single-precision floating point numbers type SFloat = SBV Float -- | IEEE-754 double-precision floating point numbers type SDouble = SBV Double -- | A symbolic character. Note that, as far as SBV's symbolic strings are concerned, a character -- is currently an 8-bit unsigned value, corresponding to the ISO-8859-1 (Latin-1) character -- set: . A Haskell 'Char', on the other hand, is based -- on unicode. Therefore, there isn't a 1-1 correspondence between a Haskell character and an SBV -- character for the time being. This limitation is due to the SMT-solvers only supporting this -- particular subset. However, there is a pending proposal to add support for unicode, and SBV -- will track these changes to have full unicode support as solvers become available. For -- details, see: type SChar = SBV Char -- | A symbolic string. Note that a symbolic string is /not/ a list of symbolic characters, -- that is, it is not the case that @SString = [SChar]@, unlike what one might expect following -- Haskell strings. An 'SString' is a symbolic value of its own, of possibly arbitrary but finite length, -- and internally processed as one unit as opposed to a fixed-length list of characters. type SString = SBV String -- | A symbolic list of items. Note that a symbolic list is /not/ a list of symbolic items, -- that is, it is not the case that @SList a = [a]@, unlike what one might expect following -- haskell lists\/sequences. An 'SList' is a symbolic value of its own, of possibly arbitrary but finite -- length, and internally processed as one unit as opposed to a fixed-length list of items. -- Note that lists can be nested, i.e., we do allow lists of lists of ... items. type SList a = SBV [a] -- | Symbolic 'Either' type SEither a b = SBV (Either a b) -- | Symbolic 'Maybe' type SMaybe a = SBV (Maybe a) -- | Symbolic 'Data.Set'. Note that we use 'RCSet', which supports -- both regular sets and complements, i.e., those obtained from the -- universal set (of the right type) by removing elements. type SSet a = SBV (RCSet a) -- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent. type STuple a b = SBV (a, b) -- | Symbolic 2-tuple. NB. 'STuple' and 'STuple2' are equivalent. type STuple2 a b = SBV (a, b) -- | Symbolic 3-tuple. type STuple3 a b c = SBV (a, b, c) -- | Symbolic 4-tuple. type STuple4 a b c d = SBV (a, b, c, d) -- | Symbolic 5-tuple. type STuple5 a b c d e = SBV (a, b, c, d, e) -- | Symbolic 6-tuple. type STuple6 a b c d e f = SBV (a, b, c, d, e, f) -- | Symbolic 7-tuple. type STuple7 a b c d e f g = SBV (a, b, c, d, e, f, g) -- | Symbolic 8-tuple. type STuple8 a b c d e f g h = SBV (a, b, c, d, e, f, g, h) -- | IsList instance allows list literals to be written compactly. instance SymVal [a] => IsList (SList a) where type Item (SList a) = a fromList = literal toList x = fromMaybe (error "IsList.toList used in a symbolic context!") (unliteral x) -- | Not-A-Number for 'Double' and 'Float'. Surprisingly, Haskell -- Prelude doesn't have this value defined, so we provide it here. nan :: Floating a => a nan = 0/0 -- | Infinity for 'Double' and 'Float'. Surprisingly, Haskell -- Prelude doesn't have this value defined, so we provide it here. infinity :: Floating a => a infinity = 1/0 -- | Symbolic variant of Not-A-Number. This value will inhabit both -- 'SDouble' and 'SFloat'. sNaN :: (Floating a, SymVal a) => SBV a sNaN = literal nan -- | Symbolic variant of infinity. This value will inhabit both -- 'SDouble' and 'SFloat'. sInfinity :: (Floating a, SymVal a) => SBV a sInfinity = literal infinity -- | Internal representation of a symbolic simulation result newtype SMTProblem = SMTProblem {smtLibPgm :: SMTConfig -> SMTLibPgm} -- ^ SMTLib representation, given the config -- | Symbolic 'True' sTrue :: SBool sTrue = SBV (svBool True) -- | Symbolic 'False' sFalse :: SBool sFalse = SBV (svBool False) -- | Symbolic boolean negation sNot :: SBool -> SBool sNot (SBV b) = SBV (svNot b) -- | Symbolic conjunction infixr 3 .&& (.&&) :: SBool -> SBool -> SBool SBV x .&& SBV y = SBV (x `svAnd` y) -- | Symbolic disjunction infixr 2 .|| (.||) :: SBool -> SBool -> SBool SBV x .|| SBV y = SBV (x `svOr` y) -- | Symbolic logical xor infixl 6 .<+> (.<+>) :: SBool -> SBool -> SBool SBV x .<+> SBV y = SBV (x `svXOr` y) -- | Symbolic nand infixr 3 .~& (.~&) :: SBool -> SBool -> SBool x .~& y = sNot (x .&& y) -- | Symbolic nor infixr 2 .~| (.~|) :: SBool -> SBool -> SBool x .~| y = sNot (x .|| y) -- | Symbolic implication infixr 1 .=> (.=>) :: SBool -> SBool -> SBool x .=> y = sNot x .|| y -- NB. Do *not* try to optimize @x .=> x = True@ here! If constants go through, it'll get simplified. -- The case "x .=> x" can hit is extremely rare, and the getAllSatResult function relies on this -- trick to generate constraints in the unlucky case of ui-function models. -- | Symbolic boolean equivalence infixr 1 .<=> (.<=>) :: SBool -> SBool -> SBool x .<=> y = (x .&& y) .|| (sNot x .&& sNot y) -- | Conversion from 'Bool' to 'SBool' fromBool :: Bool -> SBool fromBool True = sTrue fromBool False = sFalse -- | Generalization of 'and' sAnd :: [SBool] -> SBool sAnd = foldr (.&&) sTrue -- | Generalization of 'or' sOr :: [SBool] -> SBool sOr = foldr (.||) sFalse -- | Generalization of 'any' sAny :: (a -> SBool) -> [a] -> SBool sAny f = sOr . map f -- | Generalization of 'all' sAll :: (a -> SBool) -> [a] -> SBool sAll f = sAnd . map f -- | 'RoundingMode' can be used symbolically instance SymVal RoundingMode -- | The symbolic variant of 'RoundingMode' type SRoundingMode = SBV RoundingMode -- | Symbolic variant of 'RoundNearestTiesToEven' sRoundNearestTiesToEven :: SRoundingMode sRoundNearestTiesToEven = literal RoundNearestTiesToEven -- | Symbolic variant of 'RoundNearestTiesToAway' sRoundNearestTiesToAway :: SRoundingMode sRoundNearestTiesToAway = literal RoundNearestTiesToAway -- | Symbolic variant of 'RoundTowardPositive' sRoundTowardPositive :: SRoundingMode sRoundTowardPositive = literal RoundTowardPositive -- | Symbolic variant of 'RoundTowardNegative' sRoundTowardNegative :: SRoundingMode sRoundTowardNegative = literal RoundTowardNegative -- | Symbolic variant of 'RoundTowardZero' sRoundTowardZero :: SRoundingMode sRoundTowardZero = literal RoundTowardZero -- | Alias for 'sRoundNearestTiesToEven' sRNE :: SRoundingMode sRNE = sRoundNearestTiesToEven -- | Alias for 'sRoundNearestTiesToAway' sRNA :: SRoundingMode sRNA = sRoundNearestTiesToAway -- | Alias for 'sRoundTowardPositive' sRTP :: SRoundingMode sRTP = sRoundTowardPositive -- | Alias for 'sRoundTowardNegative' sRTN :: SRoundingMode sRTN = sRoundTowardNegative -- | Alias for 'sRoundTowardZero' sRTZ :: SRoundingMode sRTZ = sRoundTowardZero -- | A 'Show' instance is not particularly "desirable," when the value is symbolic, -- but we do need this instance as otherwise we cannot simply evaluate Haskell functions -- that return symbolic values and have their constant values printed easily! instance Show (SBV a) where show (SBV sv) = show sv -- | This instance is only defined so that we can define an instance for -- 'Data.Bits.Bits'. '==' and '/=' simply throw an error. Use -- 'Data.SBV.EqSymbolic' instead. instance Eq (SBV a) where SBV a == SBV b = a == b SBV a /= SBV b = a /= b instance HasKind a => HasKind (SBV a) where kindOf _ = kindOf (Proxy @a) -- | Convert a symbolic value to a symbolic-word sbvToSV :: State -> SBV a -> IO SV sbvToSV st (SBV s) = svToSV st s ------------------------------------------------------------------------- -- * Symbolic Computations ------------------------------------------------------------------------- -- | Generalization of 'Data.SBV.mkSymSBV' mkSymSBV :: forall a m. MonadSymbolic m => Maybe Quantifier -> Kind -> Maybe String -> m (SBV a) mkSymSBV mbQ k mbNm = SBV <$> (symbolicEnv >>= liftIO . svMkSymVar mbQ k mbNm) -- | Generalization of 'Data.SBV.sbvToSymSW' sbvToSymSV :: MonadSymbolic m => SBV a -> m SV sbvToSymSV sbv = do st <- symbolicEnv liftIO $ sbvToSV st sbv -- | Actions we can do in a context: Either at problem description -- time or while we are dynamically querying. 'Symbolic' and 'Query' are -- two instances of this class. Note that we use this mechanism -- internally and do not export it from SBV. class SolverContext m where -- | Add a constraint, any satisfying instance must satisfy this condition. constrain :: SBool -> m () -- | Add a soft constraint. The solver will try to satisfy this condition if possible, but won't if it cannot. softConstrain :: SBool -> m () -- | Add a named constraint. The name is used in unsat-core extraction. namedConstraint :: String -> SBool -> m () -- | Add a constraint, with arbitrary attributes. constrainWithAttribute :: [(String, String)] -> SBool -> m () -- | Set info. Example: @setInfo ":status" ["unsat"]@. setInfo :: String -> [String] -> m () -- | Set an option. setOption :: SMTOption -> m () -- | Set the logic. setLogic :: Logic -> m () -- | Set a solver time-out value, in milli-seconds. This function -- essentially translates to the SMTLib call @(set-info :timeout val)@, -- and your backend solver may or may not support it! The amount given -- is in milliseconds. Also see the function 'Data.SBV.Control.timeOut' for finer level -- control of time-outs, directly from SBV. setTimeOut :: Integer -> m () -- | Get the state associated with this context contextState :: m State {-# MINIMAL constrain, softConstrain, namedConstraint, constrainWithAttribute, setOption, contextState #-} -- time-out, logic, and info are simply options in our implementation, so default implementation suffices setTimeOut t = setOption $ OptionKeyword ":timeout" [show t] setLogic = setOption . SetLogic setInfo k = setOption . SetInfo k -- | A class representing what can be returned from a symbolic computation. class Outputtable a where -- | Generalization of 'Data.SBV.output' output :: MonadSymbolic m => a -> m a instance Outputtable (SBV a) where output i = do outputSVal (unSBV i) return i instance Outputtable a => Outputtable [a] where output = mapM output instance Outputtable () where output = return instance (Outputtable a, Outputtable b) => Outputtable (a, b) where output = mlift2 (,) output output instance (Outputtable a, Outputtable b, Outputtable c) => Outputtable (a, b, c) where output = mlift3 (,,) output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d) => Outputtable (a, b, c, d) where output = mlift4 (,,,) output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e) => Outputtable (a, b, c, d, e) where output = mlift5 (,,,,) output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f) => Outputtable (a, b, c, d, e, f) where output = mlift6 (,,,,,) output output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g) => Outputtable (a, b, c, d, e, f, g) where output = mlift7 (,,,,,,) output output output output output output output instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g, Outputtable h) => Outputtable (a, b, c, d, e, f, g, h) where output = mlift8 (,,,,,,,) output output output output output output output output ------------------------------------------------------------------------------- -- * Symbolic Values ------------------------------------------------------------------------------- -- | A 'SymVal' is a potential symbolic value that can be created instances of to be fed to a symbolic program. class (HasKind a, Typeable a) => SymVal a where -- | Generalization of 'Data.SBV.mkSymVal' mkSymVal :: MonadSymbolic m => Maybe Quantifier -> Maybe String -> m (SBV a) -- | Turn a literal constant to symbolic literal :: a -> SBV a -- | Extract a literal, from a CV representation fromCV :: CV -> a -- | Does it concretely satisfy the given predicate? isConcretely :: SBV a -> (a -> Bool) -> Bool -- minimal complete definition: Nothing. -- Giving no instances is okay when defining an uninterpreted/enumerated sort, but otherwise you really -- want to define: literal, fromCV, mkSymVal default mkSymVal :: (MonadSymbolic m, Read a, G.Data a) => Maybe Quantifier -> Maybe String -> m (SBV a) mkSymVal mbQ mbNm = SBV <$> (symbolicEnv >>= liftIO . svMkSymVar mbQ k mbNm) where -- NB.A call of the form -- constructUKind (Proxy @a) -- would be wrong here, as it would uninterpret the Proxy datatype! -- So, we have to use the dreaded undefined value in this case. k = constructUKind (undefined :: a) default literal :: Show a => a -> SBV a literal x = let k@(KUninterpreted _ conts) = kindOf x sx = show x mbIdx = case conts of Right xs -> sx `elemIndex` xs _ -> Nothing in SBV $ SVal k (Left (CV k (CUserSort (mbIdx, sx)))) default fromCV :: Read a => CV -> a fromCV (CV _ (CUserSort (_, s))) = read s fromCV cv = error $ "Cannot convert CV " ++ show cv ++ " to kind " ++ show (kindOf (Proxy @a)) isConcretely s p | Just i <- unliteral s = p i | True = False -- | Generalization of 'Data.SBV.forall' forall :: MonadSymbolic m => String -> m (SBV a) forall = mkSymVal (Just ALL) . Just -- | Generalization of 'Data.SBV.forall_' forall_ :: MonadSymbolic m => m (SBV a) forall_ = mkSymVal (Just ALL) Nothing -- | Generalization of 'Data.SBV.mkForallVars' mkForallVars :: MonadSymbolic m => Int -> m [SBV a] mkForallVars n = mapM (const forall_) [1 .. n] -- | Generalization of 'Data.SBV.exists' exists :: MonadSymbolic m => String -> m (SBV a) exists = mkSymVal (Just EX) . Just -- | Generalization of 'Data.SBV.exists_' exists_ :: MonadSymbolic m => m (SBV a) exists_ = mkSymVal (Just EX) Nothing -- | Generalization of 'Data.SBV.mkExistVars' mkExistVars :: MonadSymbolic m => Int -> m [SBV a] mkExistVars n = mapM (const exists_) [1 .. n] -- | Generalization of 'Data.SBV.free' free :: MonadSymbolic m => String -> m (SBV a) free = mkSymVal Nothing . Just -- | Generalization of 'Data.SBV.free_' free_ :: MonadSymbolic m => m (SBV a) free_ = mkSymVal Nothing Nothing -- | Generalization of 'Data.SBV.mkFreeVars' mkFreeVars :: MonadSymbolic m => Int -> m [SBV a] mkFreeVars n = mapM (const free_) [1 .. n] -- | Generalization of 'Data.SBV.symbolic' symbolic :: MonadSymbolic m => String -> m (SBV a) symbolic = free -- | Generalization of 'Data.SBV.symbolics' symbolics :: MonadSymbolic m => [String] -> m [SBV a] symbolics = mapM symbolic -- | Extract a literal, if the value is concrete unliteral :: SBV a -> Maybe a unliteral (SBV (SVal _ (Left c))) = Just $ fromCV c unliteral _ = Nothing -- | Is the symbolic word concrete? isConcrete :: SBV a -> Bool isConcrete (SBV (SVal _ (Left _))) = True isConcrete _ = False -- | Is the symbolic word really symbolic? isSymbolic :: SBV a -> Bool isSymbolic = not . isConcrete instance (Random a, SymVal a) => Random (SBV a) where randomR (l, h) g = case (unliteral l, unliteral h) of (Just lb, Just hb) -> let (v, g') = randomR (lb, hb) g in (literal (v :: a), g') _ -> error "SBV.Random: Cannot generate random values with symbolic bounds" random g = let (v, g') = random g in (literal (v :: a) , g') --------------------------------------------------------------------------------- -- * Symbolic Arrays --------------------------------------------------------------------------------- -- | Flat arrays of symbolic values -- An @array a b@ is an array indexed by the type @'SBV' a@, with elements of type @'SBV' b@. -- -- If a default value is supplied, then all the array elements will be initialized to this value. -- Otherwise, they will be left unspecified, i.e., a read from an unwritten location will produce -- an uninterpreted constant. -- -- While it's certainly possible for user to create instances of 'SymArray', the -- 'SArray' and 'SFunArray' instances already provided should cover most use cases -- in practice. Note that there are a few differences between these two models in -- terms of use models: -- -- * 'SArray' produces SMTLib arrays, and requires a solver that understands the -- array theory. 'SFunArray' is internally handled, and thus can be used with -- any solver. (Note that all solvers except 'Data.SBV.abc' support arrays, so this isn't -- a big decision factor.) -- -- * For both arrays, if a default value is supplied, then reading from uninitialized -- cell will return that value. If the default is not given, then reading from -- uninitialized cells is still OK for both arrays, and will produce an uninterpreted -- constant in both cases. -- -- * Only 'SArray' supports checking equality of arrays. (That is, checking if an entire -- array is equivalent to another.) 'SFunArray's cannot be checked for equality. In general, -- checking wholesale equality of arrays is a difficult decision problem and should be -- avoided if possible. -- -- * Only 'SFunArray' supports compilation to C. Programs using 'SArray' will not be -- accepted by the C-code generator. -- -- * You cannot use quickcheck on programs that contain these arrays. (Neither 'SArray' -- nor 'SFunArray'.) -- -- * With 'SArray', SBV transfers all array-processing to the SMT-solver. So, it can generate -- programs more quickly, but they might end up being too hard for the solver to handle. With -- 'SFunArray', SBV only generates code for individual elements and the array itself never -- shows up in the resulting SMTLib program. This puts more onus on the SBV side and might -- have some performance impacts, but it might generate problems that are easier for the SMT -- solvers to handle. -- -- As a rule of thumb, try 'SArray' first. These should generate compact code. However, if -- the backend solver has hard time solving the generated problems, switch to -- 'SFunArray'. If you still have issues, please report so we can see what the problem might be! class SymArray array where -- | Generalization of 'Data.SBV.newArray_' newArray_ :: (MonadSymbolic m, HasKind a, HasKind b) => Maybe (SBV b) -> m (array a b) -- | Generalization of 'Data.SBV.newArray' newArray :: (MonadSymbolic m, HasKind a, HasKind b) => String -> Maybe (SBV b) -> m (array a b) -- | Read the array element at @a@ readArray :: array a b -> SBV a -> SBV b -- | Update the element at @a@ to be @b@ writeArray :: SymVal b => array a b -> SBV a -> SBV b -> array a b -- | Merge two given arrays on the symbolic condition -- Intuitively: @mergeArrays cond a b = if cond then a else b@. -- Merging pushes the if-then-else choice down on to elements mergeArrays :: SymVal b => SBV Bool -> array a b -> array a b -> array a b -- | Internal function, not exported to the user newArrayInState :: (HasKind a, HasKind b) => Maybe String -> Maybe (SBV b) -> State -> IO (array a b) {-# MINIMAL readArray, writeArray, mergeArrays, ((newArray_, newArray) | newArrayInState) #-} newArray_ mbVal = symbolicEnv >>= liftIO . newArrayInState Nothing mbVal newArray nm mbVal = symbolicEnv >>= liftIO . newArrayInState (Just nm) mbVal -- Despite our MINIMAL pragma and default implementations for newArray_ and -- newArray, we must provide a dummy implementation for newArrayInState: newArrayInState = error "undefined: newArrayInState" -- | Arrays implemented in terms of SMT-arrays: -- -- * Maps directly to SMT-lib arrays -- -- * Reading from an unintialized value is OK. If the default value is given in 'newArray', it will -- be the result. Otherwise, the read yields an uninterpreted constant. -- -- * Can check for equality of these arrays -- -- * Cannot be used in code-generation (i.e., compilation to C) -- -- * Cannot quick-check theorems using @SArray@ values -- -- * Typically slower as it heavily relies on SMT-solving for the array theory newtype SArray a b = SArray { unSArray :: SArr } instance (HasKind a, HasKind b) => Show (SArray a b) where show SArray{} = "SArray<" ++ showType (Proxy @a) ++ ":" ++ showType (Proxy @b) ++ ">" instance SymArray SArray where readArray (SArray arr) (SBV a) = SBV (readSArr arr a) writeArray (SArray arr) (SBV a) (SBV b) = SArray (writeSArr arr a b) mergeArrays (SBV t) (SArray a) (SArray b) = SArray (mergeSArr t a b) newArrayInState :: forall a b. (HasKind a, HasKind b) => Maybe String -> Maybe (SBV b) -> State -> IO (SArray a b) newArrayInState mbNm mbVal st = do mapM_ (registerKind st) [aknd, bknd] SArray <$> newSArr st (aknd, bknd) (mkNm mbNm) (unSBV <$> mbVal) where mkNm Nothing t = "array_" ++ show t mkNm (Just nm) _ = nm aknd = kindOf (Proxy @a) bknd = kindOf (Proxy @b) -- | Arrays implemented internally, without translating to SMT-Lib functions: -- -- * Internally handled by the library and not mapped to SMT-Lib, hence can -- be used with solvers that don't support arrays. (Such as abc.) -- -- * Reading from an unintialized value is OK. If the default value is given in 'newArray', it will -- be the result. Otherwise, the read yields an uninterpreted constant. -- -- * Cannot check for equality of arrays. -- -- * Can be used in code-generation (i.e., compilation to C). -- -- * Can not quick-check theorems using @SFunArray@ values -- -- * Typically faster as it gets compiled away during translation. newtype SFunArray a b = SFunArray { unSFunArray :: SFunArr } instance (HasKind a, HasKind b) => Show (SFunArray a b) where show SFunArray{} = "SFunArray<" ++ showType (Proxy @a) ++ ":" ++ showType (Proxy @b) ++ ">" instance SymArray SFunArray where readArray (SFunArray arr) (SBV a) = SBV (readSFunArr arr a) writeArray (SFunArray arr) (SBV a) (SBV b) = SFunArray (writeSFunArr arr a b) mergeArrays (SBV t) (SFunArray a) (SFunArray b) = SFunArray (mergeSFunArr t a b) newArrayInState :: forall a b. (HasKind a, HasKind b) => Maybe String -> Maybe (SBV b) -> State -> IO (SFunArray a b) newArrayInState mbNm mbVal st = do mapM_ (registerKind st) [aknd, bknd] SFunArray <$> newSFunArr st (aknd, bknd) (mkNm mbNm) (unSBV <$> mbVal) where mkNm Nothing t = "funArray_" ++ show t mkNm (Just nm) _ = nm aknd = kindOf (Proxy @a) bknd = kindOf (Proxy @b)