Copyright | (c) Levent Erkok |
---|---|

License | BSD3 |

Maintainer | erkokl@gmail.com |

Stability | experimental |

Safe Haskell | None |

Language | Haskell2010 |

Demonstrates the extension field (`oo`

/`epsilon`

) optimization results.

# Documentation

Optimization goals where min/max values might require assignments to values that are infinite (integer case), or infinite/epsion (real case). This simple example demostrates how SBV can be used to extract such values.

We have:

`>>>`

Objective "one-x": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (3.0 * epsilon) :: Real min_z = 5.0 + (2.0 * epsilon) :: Real Objective "min_y": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (3.0 * epsilon) :: Real min_z = 5.0 + (2.0 * epsilon) :: Real Objective "min_z": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (3.0 * epsilon) :: Real min_z = 5.0 + (2.0 * epsilon) :: Real`optimize Independent problem`