-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Formally prove properties of Haskell programs using SBV/SMT -- -- GHC plugin for proving properties over Haskell functions using SMT -- solvers, based on the SBV package. -- -- See Data.SBV.Plugin for a quick example, or the modules under -- Data.SBV.Plugin.Examples for more details. @package sbvPlugin @version 9.2.2 -- | Internal data-structures for the sbvPlugin module Data.SBV.Plugin.Data -- | Plugin options. Note that we allow picking multiple solvers, which -- will all be run in parallel. You can pick and choose any number of -- them, or if you want to run all available solvers, then use the option -- AnySolver. The default behavior is to error-out on failure, -- using the default-SMT solver picked by SBV, which is currently Z3. data SBVOption -- | Continue even if proof fails IgnoreFailure :: SBVOption -- | Skip the proof. Can be handy for properties that we currently do not -- want to focus on. Skip :: String -> SBVOption -- | Produce verbose output, good for debugging Verbose :: SBVOption -- | Produce really verbose output, use only when things go really wrong! Debug :: SBVOption -- | Perform quickCheck QuickCheck :: SBVOption -- | Uninterpret this binding for proof purposes Uninterpret :: SBVOption -- | Use these names for the arguments; need not be exhaustive Names :: [String] -> SBVOption -- | If a list-input is found, use this length. If not specified, we will -- complain! ListSize :: Int -> SBVOption -- | Use Z3 Z3 :: SBVOption -- | Use Yices Yices :: SBVOption -- | Use Boolector Boolector :: SBVOption -- | Use CVC4 CVC4 :: SBVOption -- | Use MathSAT MathSAT :: SBVOption -- | Use ABC ABC :: SBVOption -- | Run all installed solvers in parallel, and report the result from the -- first to finish AnySolver :: SBVOption -- | The actual annotation. newtype SBVAnnotation SBV :: [SBVOption] -> SBVAnnotation [options] :: SBVAnnotation -> [SBVOption] -- | A property annotation, using default options. sbv :: SBVAnnotation -- | Synonym for sbv really, just looks cooler theorem :: SBVAnnotation -- | Importable type as an annotation alternative type Proved a = a instance Data.Data.Data Data.SBV.Plugin.Data.SBVOption instance GHC.Classes.Eq Data.SBV.Plugin.Data.SBVOption instance GHC.Show.Show Data.SBV.Plugin.Data.SBVOption instance Data.Data.Data Data.SBV.Plugin.Data.SBVAnnotation instance GHC.Classes.Eq Data.SBV.Plugin.Data.SBVAnnotation -- | (The sbvPlugin is hosted at -- http://github.com/LeventErkok/sbvPlugin. Comments, bug reports, -- and patches are always welcome.) -- --
-- {-# OPTIONS_GHC -fplugin=Data.SBV.Plugin #-}
--
-- module Test where
--
-- import Data.SBV.Plugin
--
-- {-# ANN test theorem #-}
-- test :: Integer -> Integer -> Bool
-- test x y = x + y >= x - y
--
--
-- When compiled via GHC or loaded into GHCi, we get:
--
-- -- [SBV] Test.hs:9:1-4 Proving "test", using Z3. -- [Z3] Falsifiable. Counter-example: -- x = 0 :: Integer -- y = -1 :: Integer -- [SBV] Failed. (Use option 'IgnoreFailure' to continue.) ---- -- Note that the compilation will be aborted, since the theorem doesn't -- hold. As shown in the hint, GHC can be instructed to continue in that -- case, using an annotation of the form: -- --
-- {-# ANN test theorem {options = [IgnoreFailure]} #-}
--
--
-- -- -fplugin-opt Data.SBV.Plugin:runLast ---- -- Please report if you find any crucial differences when the plugin is -- run first or last, especially if the outputs are different. module Data.SBV.Plugin -- | Entry point to the plugin plugin :: Plugin -- | The actual annotation. newtype SBVAnnotation SBV :: [SBVOption] -> SBVAnnotation [options] :: SBVAnnotation -> [SBVOption] -- | A property annotation, using default options. sbv :: SBVAnnotation -- | Synonym for sbv really, just looks cooler theorem :: SBVAnnotation -- | Plugin options. Note that we allow picking multiple solvers, which -- will all be run in parallel. You can pick and choose any number of -- them, or if you want to run all available solvers, then use the option -- AnySolver. The default behavior is to error-out on failure, -- using the default-SMT solver picked by SBV, which is currently Z3. data SBVOption -- | Continue even if proof fails IgnoreFailure :: SBVOption -- | Skip the proof. Can be handy for properties that we currently do not -- want to focus on. Skip :: String -> SBVOption -- | Produce verbose output, good for debugging Verbose :: SBVOption -- | Produce really verbose output, use only when things go really wrong! Debug :: SBVOption -- | Perform quickCheck QuickCheck :: SBVOption -- | Uninterpret this binding for proof purposes Uninterpret :: SBVOption -- | Use these names for the arguments; need not be exhaustive Names :: [String] -> SBVOption -- | If a list-input is found, use this length. If not specified, we will -- complain! ListSize :: Int -> SBVOption -- | Use Z3 Z3 :: SBVOption -- | Use Yices Yices :: SBVOption -- | Use Boolector Boolector :: SBVOption -- | Use CVC4 CVC4 :: SBVOption -- | Use MathSAT MathSAT :: SBVOption -- | Use ABC ABC :: SBVOption -- | Run all installed solvers in parallel, and report the result from the -- first to finish AnySolver :: SBVOption -- | Importable type as an annotation alternative type Proved a = a -- | A transcription of Anthony Cowley's MicroController example, using the -- SBV plugin. For the original, see: -- http://acowley.github.io/NYHUG/FunctionalRoboticist.pdf module Data.SBV.Plugin.Examples.MicroController -- | The range detector must output if the range is larger than this -- amount. safetyDistance :: Int -- | The range detector must have sent an output before this many cycles -- have past. maxTimeSince :: Int -- | Given a last-signal-time calculator, named calculate, check -- that it satisfies the following three requirements: We must've just -- sent a signal if: -- --
-- [SBV] MicroController.hs:85:1-8 Proving "checkBad", using Z3. -- [Z3] Falsifiable. Counter-example: -- range = 0 :: Int64 -- manual = False :: Bool -- timeSince = 9 :: Int64 ---- -- We're being told that if the range is 0, and manual override is off, -- and time-since last is 9, then our "calculator" returns 10. But that -- violates the minRate requirement, since we never want to go -- maxTimeSince cycles without sending a signal! checkBad :: Int -> Bool -> Int -> Bool -- | A "good" implementation, properly handling the off-by-one error of the -- original. computeLastGood :: Int -> Bool -> Int -> Int -- | We now verify that the good variant is indeed good. We have: -- --
-- [SBV] MicroController.hs:108:1-9 Proving "checkGood", using Z3. -- [Z3] Q.E.D. --checkGood :: Proved (Int -> Bool -> Int -> Bool) -- | An implementation of merge-sort and its correctness. module Data.SBV.Plugin.Examples.MergeSort -- | Merging two given sorted lists, preserving the order. merge :: Ord a => [a] -> [a] -> [a] -- | Simple merge-sort implementation. mergeSort :: Ord a => [a] -> [a] -- | Check whether a given sequence is non-decreasing. nonDecreasing :: Ord a => [a] -> Bool -- | Check whether two given sequences are permutations. We simply check -- that each sequence is a subset of the other, when considered as a set. -- The check is slightly complicated for the need to account for possibly -- duplicated elements. isPermutationOf :: Eq a => [a] -> [a] -> Bool -- | Asserting correctness of merge-sort for a list of the given size. Note -- that we can only check correctness for fixed-size lists. Also, the -- proof will get more and more complicated for the backend SMT solver as -- n increases. Here we try it with 4. -- -- We have: -- --
-- [SBV] tests/T48.hs:100:1-16 Proving "mergeSortCorrect", using Z3. -- [Z3] Q.E.D. --mergeSortCorrect :: [Int] -> Bool -- | Shows that a naive definition of maximum doing bit-vector arithmetic -- is incorrect. module Data.SBV.Plugin.Examples.Maximum -- | Compute the maximum of three integers, which is intuitively correct -- for unbounded values, but not for bounded bit-vectors. myMax :: Int -> Int -> Int -> Int -- | Show that this function fails to compute maximum correctly. We have: -- --
-- [SBV] a.hs:11:1-7 Proving "correct", using Z3. -- [Z3] Falsifiable. Counter-example: -- x = -2816883406898309583 :: Int64 -- y = -2816883406898309583 :: Int64 -- z = 6694719001794338309 :: Int64 --correct :: Proved (Int -> Int -> Int -> Bool) -- | Checks the correctness of a few tricks from the large collection found -- in: https://graphics.stanford.edu/~seander/bithacks.html module Data.SBV.Plugin.Examples.BitTricks -- | SBVPlugin can only see definitions in the current module. So we define -- elem ourselves. elem :: Eq a => a -> [a] -> Bool -- | Returns 1 if bool is True oneIf :: Num a => Bool -> a -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax fastMinCorrect :: Proved (Int -> Int -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax fastMaxCorrect :: Proved (Int -> Int -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#DetectOppositeSigns oppositeSignsCorrect :: Proved (Int -> Int -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#ConditionalSetOrClearBitsWithoutBranching conditionalSetClearCorrect :: Proved (Bool -> Word32 -> Word32 -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2 powerOfTwoCorrect :: Proved (Word32 -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge maskedMergeCorrect :: Proved (Word32 -> Word32 -> Word32 -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 roundPowerOfTwoCorrect :: Proved (Word32 -> Bool) -- | Formalizes -- https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord zeroInWord :: Proved (Word32 -> Bool)