{- Copyright 2009 Mario Blazevic This file is part of the Streaming Component Combinators (SCC) project. The SCC project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. SCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with SCC. If not, see . -} -- | Module "XML" defines primitives and combinators for parsing and manipulating XML. {-# LANGUAGE PatternGuards, ScopedTypeVariables #-} module Control.Concurrent.SCC.XML ( -- * Types Token (..), -- * Parsing XML tokens, parseTokens, expandEntity, -- * Showing XML escapeAttributeCharacter, escapeContentCharacter, -- * Splitters element, elementContent, elementName, attribute, attributeName, attributeValue, -- * SplitterComponent combinators elementHavingTag, havingText, havingOnlyText ) where import Control.Exception (assert) import Control.Monad (liftM, when) import Data.Char import qualified Data.Map as Map import Data.Maybe (fromJust, isJust, mapMaybe) import Data.List (find, stripPrefix) import qualified Data.Sequence as Seq import Data.Sequence ((|>)) import Numeric (readDec, readHex) import Debug.Trace (trace) import Control.Concurrent.Coroutine import Control.Concurrent.SCC.Streams import Control.Concurrent.SCC.Types import Control.Concurrent.SCC.Combinators (groupMarks, splitterToMarker, parseNestedRegions) import Control.Concurrent.SCC.Primitives (unparse) data Token = StartTag | EndTag | EmptyTag | ElementName | AttributeName | AttributeValue | EntityReferenceToken | EntityName | ProcessingInstruction | ProcessingInstructionText | Comment | CommentText | StartMarkedSectionCDATA | EndMarkedSection | ErrorToken String deriving (Eq, Show) -- | Escapes a character for inclusion into an XML attribute value. escapeAttributeCharacter :: Char -> String escapeAttributeCharacter '"' = """ escapeAttributeCharacter '\t' = " " escapeAttributeCharacter '\n' = " " escapeAttributeCharacter '\r' = " " escapeAttributeCharacter x = escapeContentCharacter x -- | Escapes a character for inclusion into the XML data content. escapeContentCharacter :: Char -> String escapeContentCharacter '<' = "<" escapeContentCharacter '&' = "&" escapeContentCharacter x = [x] -- | Converts an XML entity name into the text value it represents: @expandEntity \"lt\" = \"<\"@. expandEntity :: String -> String expandEntity "lt" = "<" expandEntity "gt" = ">" expandEntity "quot" = "\"" expandEntity "apos" = "'" expandEntity "amp" = "&" expandEntity ('#' : 'x' : codePoint) = [chr (fst $ head $ readHex codePoint)] expandEntity ('#' : codePoint) = [chr (fst $ head $ readDec codePoint)] isNameStart x = isLetter x || x == '_' isNameChar x = isAlphaNum x || x == '_' || x == '-' -- | The 'tokens' splitter distinguishes XML markup from data content. It is used by 'parseTokens'. tokens :: Monad m => Splitter m Char (Boundary Token) tokens = Splitter $ \source true false edge-> let getContent = get source >>= maybe (return []) content content '<' = get source >>= maybe (return "<") (\x-> tag x >> get source >>= maybe (return []) content) content '&' = entity >> next content content x = put false x >>= cond getContent (return [x]) tag '?' = put edge (Start ProcessingInstruction) >> putList ">= whenNull (put edge (Start ProcessingInstructionText) >> processingInstruction) tag '!' = dispatchOnString source (\other-> put edge (Point (ErrorToken ("Expecting > return (" put edge (Start Comment) >> putList match true >>= whenNull (put edge (Start CommentText) >> comment)), ("[CDATA[", \match-> put edge (Start StartMarkedSectionCDATA) >> putList match true >>= whenNull (put edge (End StartMarkedSectionCDATA) >> markedSection))] tag '/' = {-# SCC "EndTag" #-} do put edge (Start EndTag) put true '<' put true '/' x <- next (name ElementName) put true x when (x /= '>') (put edge (Point (ErrorToken ("Invalid character " ++ show x ++ " in end tag"))) >> return ()) put edge (End EndTag) return [] tag x | isNameStart x = {-# SCC "StartTag" #-} do put edge (Start StartTag) put true '<' y <- name ElementName x z <- attributes y w <- if z == '/' then put true z >> put edge (Point EmptyTag) >> get source >>= maybe (put edge (Point (ErrorToken ("Missing '>' at the end of start tag."))) >> return '>') return else return z put true w when (w /= '>') (put edge (Point (ErrorToken ("Invalid character " ++ show w ++ " in start tag"))) >> return ()) put edge (End StartTag) return [] tag x = put edge (Point (ErrorToken "Unescaped character '<' in content")) >> put false '<' >> put false x >> return [] attributes x | isSpace x = put true x >> next attributes attributes x | isNameStart x = do y <- name AttributeName x when (y /= '=') (put edge (Point (ErrorToken ("Invalid character " ++ show y ++ " following attribute name"))) >> return ()) q <- if y == '"' || y == '\'' then return y else put true y >> get source >>= maybe (put edge (Point (ErrorToken ("Truncated input after attribute name"))) >> return '"') return when (q /= '"' && q /= '\'') (put edge (Point (ErrorToken ("Invalid quote character " ++ show q))) >> return ()) put true q put edge (Start AttributeValue) next (attributeValue q) next attributes attributes x = return x attributeValue q x | q == x = do put edge (End AttributeValue) put true x attributeValue q '<' = do put edge (Start (ErrorToken "Invalid character '<' in attribute value.")) put true '<' put edge (End (ErrorToken "Invalid character '<' in attribute value.")) next (attributeValue q) attributeValue q '&' = entity >> next (attributeValue q) attributeValue q x = put true x >> next (attributeValue q) processingInstruction = {-# SCC "PI" #-} dispatchOnString source (\other-> if null other then (put edge (Point (ErrorToken "Unterminated processing instruction")) >> return []) else putList other true >>= whenNull processingInstruction) [("?>", \match-> put edge (End ProcessingInstructionText) >> putList match true >>= whenNull (put edge (End ProcessingInstruction) >> getContent))] comment = {-# SCC "comment" #-} dispatchOnString source (\other-> if null other then (put edge (Point (ErrorToken "Unterminated comment")) >> return []) else putList other true >>= whenNull comment) [("-->", \match-> put edge (End CommentText) >> putList match true >>= whenNull (put edge (End Comment) >> getContent))] markedSection = {-# SCC " if null other then (put edge (Point (ErrorToken "Unterminated marked section")) >> return []) else putList other true >>= whenNull markedSection) [("]]>", \match-> put edge (Start EndMarkedSection) >> putList match true >>= whenNull (put edge (End EndMarkedSection) >> getContent))] entity = do put edge (Start EntityReferenceToken) put true '&' x <- next (name EntityName) when (x /= ';') (put edge (Point (ErrorToken ("Invalid character " ++ show x ++ " ends entity name."))) >> return ()) put true x put edge (End EntityReferenceToken) name token x | isNameStart x = {-# SCC "name" #-} do put edge (Start token) put true x next (nameTail token) name _ x = do put edge (Point (ErrorToken ("Invalid character " ++ show x ++ " in attribute value."))) return x nameTail token x = if isNameChar x || x == ':' then put true x >> next (nameTail token) else put edge (End token) >> return x next f = {-# SCC "next" #-} get' source >>= f in getContent -- | The XML token parser. This parser converts plain text to parsed text, which is a precondition for using the -- remaining XML components. parseTokens :: Monad m => Parser m Char Token parseTokens = parseNestedRegions tokens dispatchOnString :: forall m a d r. (Monad m, AncestorFunctor a d) => Source m a Char -> (String -> Coroutine d m r) -> [(String, String -> Coroutine d m r)] -> Coroutine d m r dispatchOnString source failure fullCases = dispatch fullCases id where dispatch cases consumed = case find (null . fst) cases of Just ("", rhs) -> rhs (consumed "") Nothing -> get source >>= maybe (failure (consumed "")) (\x-> case mapMaybe (startingWith x) cases of [] -> failure (consumed [x]) subcases -> dispatch (subcases ++ fullCases) (consumed . (x :))) startingWith x (y:rest, rhs) | x == y = Just (rest, rhs) | otherwise = Nothing getElementName :: forall m a d. (Monad m, AncestorFunctor a d) => Source m a (Markup Token Char) -> ([Markup Token Char] -> [Markup Token Char]) -> Coroutine d m ([Markup Token Char], Maybe String) getElementName source f = get source >>= maybe (return (f [], Nothing)) (\x-> case x of Markup (Start ElementName) -> getRestOfRegion ElementName source (f . (x:)) id Markup (Point ErrorToken{}) -> getElementName source (f . (x:)) Content{} -> getElementName source (f . (x:)) _ -> error ("Expected an ElementName, received " ++ show x)) getRestOfRegion :: forall m a d. (Monad m, AncestorFunctor a d) => Token -> Source m a (Markup Token Char) -> ([Markup Token Char] -> [Markup Token Char]) -> (String -> String) -> Coroutine d m ([Markup Token Char], Maybe String) getRestOfRegion token source f g = get source >>= maybe (return (f [], Nothing)) (\x-> case x of Markup (End token) -> return (f [x], Just (g "")) Content y -> getRestOfRegion token source (f . (x:)) (g . (y:)) _ -> error ("Expected rest of " ++ show token ++ ", received " ++ show x)) pourRestOfRegion :: forall m a1 a2 a3 d. (Monad m, AncestorFunctor a1 d, AncestorFunctor a2 d, AncestorFunctor a3 d) => Token -> Source m a1 (Markup Token Char) -> Sink m a2 (Markup Token Char) -> Sink m a3 (Markup Token Char) -> Coroutine d m (Maybe [Markup Token Char]) pourRestOfRegion token source sink endSink = get source >>= maybe (return $ Just []) (\x-> case x of Markup (End token') | token == token' -> put endSink x >>= cond (return Nothing) (return $ Just [x]) Content y -> put sink x >>= cond (pourRestOfRegion token source sink endSink) (return $ Just [x]) _ -> error ("Expected rest of " ++ show token ++ ", received " ++ show x)) pourRestOfTag :: forall m a1 a2 d. (Monad m, AncestorFunctor a1 d, AncestorFunctor a2 d) => Source m a1 (Markup Token Char) -> Sink m a2 (Markup Token Char) -> Coroutine d m Bool pourRestOfTag source sink = get source >>= maybe (return True) (\x-> put sink x >> case x of Markup (End StartTag) -> return True Markup (End EndTag) -> return True Markup (Point EmptyTag) -> pourRestOfTag source sink >> return False _ -> pourRestOfTag source sink) findEndTag :: forall m a1 a2 a3 d. (Monad m, AncestorFunctor a1 d, AncestorFunctor a2 d, AncestorFunctor a3 d) => Source m a1 (Markup Token Char) -> Sink m a2 (Markup Token Char) -> Sink m a3 (Markup Token Char) -> String -> Coroutine d m [Markup Token Char] findEndTag source sink endSink name = find where find = get source >>= maybe (return []) (\x-> case x of Markup (Start EndTag) -> do (tokens, mn) <- getElementName source (x :) maybe (return tokens) (\name'-> if name == name' then putList tokens endSink >>= whenNull (pourRestOfTag source endSink >> return []) else putList tokens sink >>= whenNull (pourRestOfTag source sink >> find)) mn Markup (Start StartTag) -> do (tokens, mn) <- getElementName source (x :) maybe (return tokens) (\name'-> putList tokens sink >>= whenNull (if name == name' then pourRestOfTag source sink >>= cond (findEndTag source sink sink name) (return []) >>= whenNull find else pourRestOfTag source sink >> find)) mn _ -> put sink x >>= cond find (return [x])) findStartTag :: forall m a1 a2 d. (Monad m, AncestorFunctor a1 d, AncestorFunctor a2 d) => Source m a1 (Markup Token Char) -> Sink m a2 (Markup Token Char) -> Coroutine d m (Either [Markup Token Char] (Markup Token Char)) findStartTag source sink = get source >>= maybe (return $ Left []) (\x-> case x of Markup (Start StartTag) -> return $ Right x _ -> put sink x >>= cond (findStartTag source sink) (return $ Left [x])) -- | Splits all top-level elements with all their content to /true/, all other input to /false/. element :: Monad m => Splitter m (Markup Token Char) () element = Splitter $ \source true false edge-> let split0 = findStartTag source false >>= either return (\x-> put edge () >> put true x >>= cond (do (tokens, mn) <- getElementName source id maybe (putList tokens true) (\name-> putList tokens true >>= whenNull (pourRestOfTag source true >>= cond (split1 name) split0)) mn) (return [x])) split1 name = findEndTag source true true name >>= whenNull split0 in split0 -- | Splits the content of all top-level elements to /true/, their tags and intervening input to /false/. elementContent :: Monad m => Splitter m (Markup Token Char) () elementContent = Splitter $ \source true false edge-> let split0 = findStartTag source false >>= either return (\x-> put false x >>= cond (do (tokens, mn) <- getElementName source id maybe (putList tokens false) (\name-> putList tokens false >>= whenNull (pourRestOfTag source false >>= cond (put edge () >> split1 name) split0)) mn) (return [x])) split1 name = findEndTag source true false name >>= whenNull split0 in split0 -- | Similiar to @('Control.Concurrent.SCC.Combinators.having' 'element')@, except it runs the argument splitter -- only on each element's start tag, not on the entire element with its content. elementHavingTag :: forall m b. ParallelizableMonad m => Splitter m (Markup Token Char) b -> Splitter m (Markup Token Char) b elementHavingTag test = isolateSplitter $ \ source true false edge -> let split0 = findStartTag source false >>= either return (\x-> do (tokens, mn) <- getElementName source (x :) maybe (return tokens) (\name-> do (hasContent, rest) <- pipe (pourRestOfTag source) getList let tag = tokens ++ rest (_, (unconsumed, maybeTrue, (), maybeEdge)) <- pipe (putList tag) (\tag-> splitToConsumers test tag get consumeAndSuppress get) if isJust maybeTrue || isJust maybeEdge then maybe (return True) (put edge) maybeEdge >> putList tag true >>= whenNull (split1 hasContent true name) else putList tag false >>= whenNull (split1 hasContent false name)) mn) split1 hasContent sink name = if hasContent then findEndTag source sink sink name >>= whenNull split0 else split0 in split0 -- | Splits every attribute specification to /true/, everything else to /false/. attribute :: Monad m => Splitter m (Markup Token Char) () attribute = Splitter $ \source true false edge-> let split0 = get source >>= maybe (return []) (\x-> case x of Markup (Start AttributeName) -> put edge () >> put true x >>= cond (pourRestOfRegion AttributeName source true true >>= maybe split1 return) (return [x]) _ -> put false x >>= cond split0 (return [x])) split1 = get source >>= maybe (return []) (\x-> case x of Markup (Start AttributeValue) -> put true x >>= cond (pourRestOfRegion AttributeValue source true true >>= maybe split0 return) (return [x]) _ -> put true x >>= cond split1 (return [x])) in split0 -- | Splits every element name, including the names of nested elements and names in end tags, to /true/, all the rest of -- input to /false/. elementName :: Monad m => Splitter m (Markup Token Char) () elementName = Splitter (splitSimpleRegions ElementName) -- | Splits every attribute name to /true/, all the rest of input to /false/. attributeName :: Monad m => Splitter m (Markup Token Char) () attributeName = Splitter (splitSimpleRegions AttributeName) -- | Splits every attribute value, excluding the quote delimiters, to /true/, all the rest of input to /false/. attributeValue :: Monad m => Splitter m (Markup Token Char) () attributeValue = Splitter (splitSimpleRegions AttributeValue) splitSimpleRegions token source true false edge = split where split = get source >>= maybe (return []) (\x-> case x of Markup (Start token') | token == token' -> put false x >>= cond (put edge () >> pourRestOfRegion token source true false >>= maybe split return) (return [x]) _ -> put false x >>= cond split (return [x])) -- | Behaves like 'Control.Concurrent.SCC.Combinators.having', but the right-hand splitter works on plain instead of -- marked-up text. This allows regular 'Char' splitters to be applied to parsed XML. havingText :: forall m b1 b2. ParallelizableMonad m => Bool -> Splitter m (Markup Token Char) b1 -> Splitter m Char b2 -> Splitter m (Markup Token Char) b1 havingText parallel chunker tester = isolateSplitter $ \ source true false edge -> let test Nothing chunk = pour chunk false >> return [] test (Just mb) chunk = pipe (\sink1-> pipe (tee chunk sink1) getList) (\chunk-> liftM snd $ pipe (transduce unparse chunk) (\chunk-> splitToConsumers tester chunk (liftM isJust . get) consumeAndSuppress (liftM isJust . get))) >>= \(((), prefix), (_, anyTrue, (), anyEdge))-> if anyTrue || anyEdge then maybe (return True) (put edge) mb >> putList prefix true >>= whenNull (pour chunk true >> return []) else putList prefix false >>= whenNull (pour chunk false >> return []) in liftM fst $ pipePS parallel (transduce (splitterToMarker chunker) source) (flip groupMarks test) -- | Behaves like 'Control.Concurrent.SCC.Combinators.havingOnly', but the right-hand splitter works on plain instead of -- marked-up text. This allows regular 'Char' splitters to be applied to parsed XML. havingOnlyText :: forall m b1 b2. ParallelizableMonad m => Bool -> Splitter m (Markup Token Char) b1 -> Splitter m Char b2 -> Splitter m (Markup Token Char) b1 havingOnlyText parallel chunker tester = isolateSplitter $ \ source true false edge -> let test Nothing chunk = pour chunk false >> return [] test (Just mb) chunk = pipe (\sink1-> pipe (tee chunk sink1) getList) (\chunk-> liftM snd $ pipe (transduce unparse chunk) (\chunk-> splitToConsumers tester chunk consumeAndSuppress (liftM isJust . get) consumeAndSuppress)) >>= \(((), prefix), (_, (), anyFalse, ()))-> if anyFalse then putList prefix false >>= whenNull (pour chunk false >> return []) else maybe (return True) (put edge) mb >> putList prefix true >>= whenNull (pour chunk true >> return []) in liftM fst $ pipePS parallel (transduce (splitterToMarker chunker) source) (flip groupMarks test)