{-# LANGUAGE CPP, MagicHash, UnboxedTuples #-} -- | Integer logarithm, copied from Daniel Fischer's @arithmoi@ module Math.NumberTheory.Logarithms ( integerLog10' ) where import GHC.Base #if __GLASGOW_HASKELL__ >= 702 import GHC.Integer.Logarithms #else #include "MachDeps.h" import GHC.Integer.GMP.Internals #if (WORD_SIZE_IN_BITS != 32) && (WORD_SIZE_IN_BITS != 64) #error Only word sizes 32 and 64 are supported. #endif #if WORD_SIZE_IN_BITS == 32 #define WSHIFT 5 #define MMASK 31 #else #define WSHIFT 6 #define MMASK 63 #endif -- | Calculate the integer base 2 logarithm of an 'Integer'. -- The calculation is much more efficient than for the general case. -- -- The argument must be strictly positive, that condition is /not/ checked. integerLog2# :: Integer -> Int# integerLog2# (S# i) = wordLog2# (int2Word# i) integerLog2# (J# s ba) = check (s -# 1#) where check i = case indexWordArray# ba i of 0## -> check (i -# 1#) w -> wordLog2# w +# (uncheckedIShiftL# i WSHIFT#) -- | This function calculates the integer base 2 logarithm of a 'Word#'. -- @'wordLog2#' 0## = -1#@. {-# INLINE wordLog2# #-} wordLog2# :: Word# -> Int# wordLog2# w = case leadingZeros of BA lz -> let zeros u = indexInt8Array# lz (word2Int# u) in #if WORD_SIZE_IN_BITS == 64 case uncheckedShiftRL# w 56# of a -> if a `neWord#` 0## then 64# -# zeros a else case uncheckedShiftRL# w 48# of b -> if b `neWord#` 0## then 56# -# zeros b else case uncheckedShiftRL# w 40# of c -> if c `neWord#` 0## then 48# -# zeros c else case uncheckedShiftRL# w 32# of d -> if d `neWord#` 0## then 40# -# zeros d else #endif case uncheckedShiftRL# w 24# of e -> if e `neWord#` 0## then 32# -# zeros e else case uncheckedShiftRL# w 16# of f -> if f `neWord#` 0## then 24# -# zeros f else case uncheckedShiftRL# w 8# of g -> if g `neWord#` 0## then 16# -# zeros g else 8# -# zeros w -- Lookup table data BA = BA ByteArray# leadingZeros :: BA leadingZeros = let mkArr s = case newByteArray# 256# s of (# s1, mba #) -> case writeInt8Array# mba 0# 9# s1 of s2 -> let fillA lim val idx st = if idx ==# 256# then st else if idx <# lim then case writeInt8Array# mba idx val st of nx -> fillA lim val (idx +# 1#) nx else fillA (2# *# lim) (val -# 1#) idx st in case fillA 2# 8# 1# s2 of s3 -> case unsafeFreezeByteArray# mba s3 of (# _, ba #) -> ba in case mkArr realWorld# of b -> BA b #endif -- | Only defined for positive inputs! integerLog10' :: Integer -> Int integerLog10' n | n < 10 = 0 | n < 100 = 1 | otherwise = ex + integerLog10' (n `quot` integerPower 10 ex) where ln = I# (integerLog2# n) -- u/v is a good approximation of log 2/log 10 u = 1936274 v = 6432163 -- so ex is a good approximation to integerLogBase 10 n ex = fromInteger ((u * fromIntegral ln) `quot` v) -- | Power of an 'Integer' by the left-to-right repeated squaring algorithm. -- This needs two multiplications in each step while the right-to-left -- algorithm needs only one multiplication for 0-bits, but here the -- two factors always have approximately the same size, which on average -- gains a bit when the result is large. -- -- For small results, it is unlikely to be any faster than '(^)', quite -- possibly slower (though the difference shouldn't be large), and for -- exponents with few bits set, the same holds. But for exponents with -- many bits set, the speedup can be significant. -- -- /Warning:/ No check for the negativity of the exponent is performed, -- a negative exponent is interpreted as a large positive exponent. integerPower :: Integer -> Int -> Integer integerPower b (I# e#) = power b (int2Word# e#) power :: Integer -> Word# -> Integer power b w# | isTrue# (w# `eqWord#` 0##) = 1 | isTrue# (w# `eqWord#` 1##) = b | otherwise = go (wordLog2# w# -# 1#) b (b*b) where go 0# l h = if isTrue# ((w# `and#` 1##) `eqWord#` 0##) then l*l else (l*h) go i# l h | w# `hasBit#` i# = go (i# -# 1#) (l*h) (h*h) | otherwise = go (i# -# 1#) (l*l) (l*h) -- | A raw version of testBit for 'Word#'. hasBit# :: Word# -> Int# -> Bool hasBit# w# i# = isTrue# (((w# `uncheckedShiftRL#` i#) `and#` 1##) `neWord#` 0##) #if __GLASGOW_HASKELL__ < 707 isTrue# :: Bool -> Bool isTrue# = id #endif