{-# LANGUAGE ConstraintKinds, DeriveFunctor, GADTs, LambdaCase #-} {-# LANGUAGE FunctionalDependencies, FlexibleContexts, FlexibleInstances #-} module Processor where import Control.Selective import Control.Selective.Rigid.Free import Data.Bool import Data.Functor import Data.Int (Int16) import Data.Map.Strict (Map) import Data.Word (Word8) import Foreign.Marshal.Utils (fromBool) import Prelude hiding (read, log) import qualified Control.Monad.Trans.State as S import qualified Data.Map.Strict as Map -- See Section 5.3 of the paper: -- https://www.staff.ncl.ac.uk/andrey.mokhov/selective-functors.pdf -- Note that we have changed the naming. -- | A standard @MonadState@ class extended with the 'Selective' interface. class (Selective m, Monad m) => MonadState s m | m -> s where get :: m s put :: s -> m () state :: (s -> (a, s)) -> m a instance Monad m => MonadState s (S.StateT s m) where get = S.get put = S.put state = S.state gets :: MonadState s m => (s -> a) -> m a gets f = f <$> get modify :: MonadState s m => (s -> s) -> m () modify f = state (\s -> ((), f s)) -------------------------------------------------------------------------------- -------- Types ----------------------------------------------------------------- -------------------------------------------------------------------------------- -- | All values are signed 16-bit words. type Value = Int16 -- | The processor has four registers. data Register = R0 | R1 | R2 | R3 deriving (Show, Eq, Ord) -- | The register bank maps registers to values. type RegisterBank = Map Register Value -- | The address space is indexed by one byte. type Address = Word8 -- | The memory maps addresses to signed 16-bit words. type Memory = Map.Map Address Value -- | The processor has two status flags. data Flag = Zero -- ^ tracks if the result of the last arithmetical operation was zero | Overflow -- ^ tracks integer overflow deriving (Show, Eq, Ord) -- | A flag assignment. type Flags = Map Flag Value -- | Address in the program memory. type InstructionAddress = Value -- | A program execution log entry, recording either a read from a key and the -- obtained value, or a write to a key, along with the written value. data LogEntry k v where ReadEntry :: k -> v -> LogEntry k v WriteEntry :: k -> v -> LogEntry k v -- | A log is a sequence of log entries, in the execution order. type Log k v = [LogEntry k v] -- | The complete processor state. data State = State { registers :: RegisterBank , memory :: Memory , pc :: InstructionAddress , flags :: Flags , log :: Log Key Value} -- | Various elements of the processor state. data Key = Reg Register | Cell Address | Flag Flag | PC deriving Eq instance Show Key where show (Reg r) = show r show (Cell a) = show a show (Flag f) = show f show PC = "PC" -- | The base functor for mutable processor state. data RW a = Read Key (Value -> a) | Write Key (Program Value) (Value -> a) deriving Functor -- | A program is a free selective on top of the 'RW' base functor. type Program a = Select RW a instance Show (RW a) where show (Read k _) = "Read " ++ show k show (Write k (Pure v) _) = "Write " ++ show k ++ " " ++ show v show (Write k _ _) = "Write " ++ show k logEntry :: MonadState State m => LogEntry Key Value -> m () logEntry item = modify $ \s -> s { log = log s ++ [item] } -- | Interpret the base functor in a 'MonadState'. toState :: MonadState State m => RW a -> m a toState = \case (Read k t) -> do v <- case k of Reg r -> gets ((Map.! r) . registers) Cell addr -> gets ((Map.! addr) . memory) Flag f -> gets ((Map.! f) . flags) PC -> gets pc logEntry (ReadEntry k v) pure (t v) (Write k p t) -> do v <- runSelect toState p logEntry (WriteEntry k v) case k of Reg r -> let regs' s = Map.insert r v (registers s) in state (\s -> (t v, s {registers = regs' s})) Cell addr -> let mem' s = Map.insert addr v (memory s) in state (\s -> (t v, s {memory = mem' s})) Flag f -> let flags' s = Map.insert f v (flags s) in state (\s -> (t v, s {flags = flags' s})) PC -> state (\s -> (t v, s {pc = v})) -- | Interpret a program as a state transformer. runProgramState :: Program a -> State -> (a, State) runProgramState f = S.runState (runSelect toState f) -- | Interpret the base functor in the selective functor 'Over'. toOver :: RW a -> Over [RW ()] a toOver (Read k _ ) = Over [Read k (const ())] toOver (Write k fv _) = runSelect toOver fv *> Over [Write k fv (const ())] -- | Get all possible program effects. getProgramEffects :: Program a -> [RW ()] getProgramEffects = getOver . runSelect toOver -- | A convenient alias for reading an element of the processor state. read :: Key -> Program Value read k = liftSelect (Read k id) -- | A convenient alias for writing into an element of the processor state. write :: Key -> Program Value -> Program Value write k fv = liftSelect (Write k fv id) -------------------------------------------------------------------------------- -------- Instructions ---------------------------------------------------------- -------------------------------------------------------------------------------- -- | The addition instruction, which reads the summands from a 'Register' and a -- memory 'Address', adds them, writes the result back into the same register, -- and also updates the state of the 'Zero' flag to indicate whether the -- resulting 'Value' is zero. add :: Register -> Address -> Program Value add reg addr = let arg1 = read (Reg reg) arg2 = read (Cell addr) result = (+) <$> arg1 <*> arg2 isZero = (==0) <$> write (Reg reg) result in write (Flag Zero) (bool 0 1 <$> isZero) -- | A conditional branching instruction that performs a jump if the result of -- the previous operation was zero. jumpZero :: Value -> Program () jumpZero offset = let zeroSet = (==1) <$> read (Flag Zero) modifyPC = void $ write PC ((+offset) <$> read PC) in whenS zeroSet modifyPC -- | A simple block of instructions. addAndJump :: Program () addAndJump = add R0 1 *> jumpZero 42 ----------------------------------- -- Add with overflow tracking ----- ----------------------------------- {- The following example demonstrates how important it is to be aware of your effects. Problem: implement the semantics of the @add@ instruction which calculates the sum of two values and writes it to the specified destination, updates the 'Zero' flag if the result is zero, and also detects if integer overflow has occurred, updating the 'Overflow' flag accordingly. We'll take a look at two approaches that implement this semantics and see the crucial deference between them. -} -- | Add two values and detect integer overflow. -- -- The interesting bit here is the call to the 'willOverflowPure' function. -- Since the function is pure, the call @willOverflowPure <$> arg1 <*> arg2@ -- triggers only one 'read' of @arg1@ and @arg2@, even though we use the -- variables many times in the 'willOverflowPure' implementation. Thus, -- 'willOverflowPure' might be thought as an atomic processor microcommand. addOverflow :: Key -> Key -> Key -> Program Value addOverflow x y z = let arg1 = read x arg2 = read y result = (+) <$> arg1 <*> arg2 isZero = (==0) <$> write z result overflow = willOverflowPure <$> arg1 <*> arg2 in write (Flag Zero) (fromBool <$> isZero) *> write (Flag Overflow) (fromBool <$> overflow) -- | A pure check for integer overflow during addition. willOverflowPure :: Value -> Value -> Bool willOverflowPure x y = let o1 = (>) y 0 o2 = (>) x((-) maxBound y) o3 = (<) y 0 o4 = (<) x((-) minBound y) in (||) ((&&) o1 o2) ((&&) o3 o4) -- | Add two values and detect integer overflow. -- -- In this implementations we take a different approach and, when implementing -- overflow detection, lift all the pure operations into 'Applicative'. This -- forces the semantics to read the input variables more times than -- 'addOverflow' does (@x@ is read 3x times, and @y@ is read 5x times). addOverflowNaive :: Key -> Key -> Key -> Program Value addOverflowNaive x y z = let arg1 = read x arg2 = read y result = (+) <$> arg1 <*> arg2 isZero = (==0) <$> write z result overflow = willOverflow arg1 arg2 in write (Flag Zero) (fromBool <$> isZero) *> write (Flag Overflow) (fromBool <$> overflow) -- | An 'Applicative' check for integer overflow during addition. willOverflow :: Program Value -> Program Value -> Program Bool willOverflow arg1 arg2 = let o1 = (>) <$> arg2 <*> pure 0 o2 = (>) <$> arg1 <*> ((-) maxBound <$> arg2) o3 = (<) <$> arg2 <*> pure 0 o4 = (<) <$> arg1 <*> ((-) minBound <$> arg2) in (||) <$> ((&&) <$> o1 <*> o2) <*> ((&&) <$> o3 <*> o4) ----------------------------------- -- Example simulations ------------ ----------------------------------- renderState :: State -> String renderState state = "Registers: " ++ show (registers state) ++ "\n" ++ "Flags: " ++ show (Map.toList $ flags state) ++ "\n" ++ "Log: " ++ show (log state) instance Show State where show = renderState emptyRegisters :: RegisterBank emptyRegisters = Map.fromList [(R0, 0), (R1, 0), (R2, 0), (R3, 0)] emptyFlags :: Flags emptyFlags = Map.fromList $ zip [Zero, Overflow] [0, 0..] initialiseMemory :: [(Address, Value)] -> Memory initialiseMemory m = let blankMemory = Map.fromList $ zip [0..maxBound] [0, 0..] in foldr (\(addr, value) acc -> Map.adjust (const value) addr acc) blankMemory m boot :: Memory -> State boot mem = State { registers = emptyRegisters , pc = 0 , flags = emptyFlags , memory = mem , log = [] } twoAdds :: Program Value twoAdds = add R0 0 *> add R0 0 addExample :: IO () addExample = do let initState = boot (initialiseMemory [(0, 2)]) print . snd $ runProgramState twoAdds initState ---------------------------- Some boilerplate code ----------------------------- instance (Show k, Show v) => Show (LogEntry k v) where show (ReadEntry k v) = "Read (" ++ show k ++ ", " ++ show v ++ ")" show (WriteEntry k v) = "Write (" ++ show k ++ ", " ++ show v ++ ")"