module Data.Semigroup ( 
    Semigroup(..)
  
  , Min(..)
  , Max(..)
  , First(..)
  , Last(..)
  , WrappedMonoid(..)
  
  , Dual(..)
  , Endo(..)
  , All(..)
  , Any(..)
  , Sum(..)
  , Product(..)
  
  , Option(..)
  , option
  
  , diff
  , cycle1
  ) where
import Prelude hiding (foldr1)
import Data.Monoid hiding (First(..), Last(..))
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import qualified Data.Monoid as Monoid
import Data.Foldable
import Data.Traversable
import Data.List.NonEmpty
import Numeric.Natural.Internal
import Data.Sequence (Seq, (><))
import Data.Set (Set)
import Data.IntSet (IntSet)
import Data.Map (Map)
import Data.IntMap (IntMap)
#ifdef LANGUAGE_DeriveDataTypeable
import Data.Data
#endif
infixl 6 <> 
class Semigroup a where
  
  
  
  (<>) :: a -> a -> a
  
  
  
  
  sconcat :: NonEmpty a -> a
  sconcat (a :| as) = go a as where
    go b (c:cs) = b <> go c cs
    go b []     = b
  
  
  
  
  
  
  
  replicate1p :: Whole n => n -> a -> a
  replicate1p y0 x0 = f x0 (1 Prelude.+ y0)
    where
      f x y
        | even y = f (x <> x) (y `quot` 2)
        | y == 1 = x
        | otherwise = g (x <> x) (unsafePred y  `quot` 2) x
      g x y z
        | even y = g (x <> x) (y `quot` 2) z
        | y == 1 = x <> z
        | otherwise = g (x <> x) (unsafePred y `quot` 2) (x <> z)
  
cycle1 :: Semigroup m => m -> m
cycle1 xs = xs' where xs' = xs <> xs'
instance Semigroup () where
  _ <> _ = ()
  sconcat _ = ()
  replicate1p _ _ = ()
instance Semigroup b => Semigroup (a -> b) where
  f <> g = \a -> f a <> g a
  replicate1p n f e = replicate1p n (f e)
instance Semigroup [a] where
  (<>) = (++)
instance Semigroup a => Semigroup (Maybe a) where
  Nothing <> b       = b
  a       <> Nothing = a
  Just a  <> Just b  = Just (a <> b)
instance Semigroup (Either a b) where
  Left _ <> b = b
  a      <> _ = a
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
  (a,b) <> (a',b') = (a<>a',b<>b')
  replicate1p n (a,b) = (replicate1p n a, replicate1p n b)
  
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
  (a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c')
  replicate1p n (a,b,c) = (replicate1p n a, replicate1p n b, replicate1p n c)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) where
  (a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d')
  replicate1p n (a,b,c,d) = (replicate1p n a, replicate1p n b, replicate1p n c, replicate1p n d)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) where
  (a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e')
  replicate1p n (a,b,c,d,e) = (replicate1p n a, replicate1p n b, replicate1p n c, replicate1p n d, replicate1p n e)
instance Semigroup a => Semigroup (Dual a) where
  Dual a <> Dual b = Dual (b <> a)
  replicate1p n (Dual a) = Dual (replicate1p n a)
instance Semigroup (Endo a) where
  Endo f <> Endo g = Endo (f . g) 
instance Semigroup All where
  All a <> All b = All (a && b)
  replicate1p _ a = a 
instance Semigroup Any where
  Any a <> Any b = Any (a || b)
  replicate1p _ a = a 
instance Num a => Semigroup (Sum a) where
  Sum a <> Sum b = Sum (a + b)
instance Num a => Semigroup (Product a) where
  Product a <> Product b = Product (a * b)
instance Semigroup (Monoid.First a) where
  Monoid.First Nothing <> b = b
  a                    <> _ = a
  replicate1p _ a = a 
instance Semigroup (Monoid.Last a) where
  a <> Monoid.Last Nothing = a
  _ <> b                   = b
  replicate1p _ a = a 
instance Semigroup (NonEmpty a) where
  (a :| as) <> ~(b :| bs) = a :| (as ++ b : bs)
newtype Min a = Min { getMin :: a } deriving 
  ( Eq, Ord, Bounded, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data, Typeable
#endif
  )
instance Ord a => Semigroup (Min a) where
  Min a <> Min b = Min (a `min` b)
  replicate1p _ a = a 
instance (Ord a, Bounded a) => Monoid (Min a) where
  mempty = maxBound
  mappend = (<>) 
newtype Max a = Max { getMax :: a } deriving 
  ( Eq, Ord, Bounded, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data, Typeable
#endif
  )
instance Ord a => Semigroup (Max a) where
  Max a <> Max b = Max (a `max` b)
  replicate1p _ a = a 
instance (Ord a, Bounded a) => Monoid (Max a) where
  mempty = minBound
  mappend = (<>) 
newtype First a = First { getFirst :: a } deriving 
  ( Eq, Ord, Bounded, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data
  , Typeable
#endif
  )
instance Semigroup (First a) where
  a <> _ = a
  replicate1p _ a = a 
newtype Last a = Last { getLast :: a } deriving 
  ( Eq, Ord, Bounded, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data, Typeable
#endif
  )
instance Semigroup (Last a) where
  _ <> b = b
  replicate1p _ a = a 
newtype WrappedMonoid m = WrapMonoid 
  { unwrapMonoid :: m } deriving 
  ( Eq, Ord, Bounded, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data, Typeable
#endif
  )
instance Monoid m => Semigroup (WrappedMonoid m) where
  WrapMonoid a <> WrapMonoid b = WrapMonoid (a `mappend` b)
instance Monoid m => Monoid (WrappedMonoid m) where
  mempty = WrapMonoid mempty
  WrapMonoid a `mappend` WrapMonoid b = WrapMonoid (a `mappend` b)
newtype Option a = Option 
  { getOption :: Maybe a } deriving 
  ( Eq, Ord, Show, Read
#ifdef LANGUAGE_DeriveDataTypeable
  , Data, Typeable
#endif
  )
instance Functor Option where
  fmap f (Option a) = Option (fmap f a)
instance Applicative Option where
  pure a = Option (Just a)
  Option a <*> Option b = Option (a <*> b)
instance Monad Option where
  return = pure
  Option (Just a) >>= k = k a
  _               >>= _ = Option Nothing
  Option Nothing  >>  _ = Option Nothing
  _               >>  b = b
instance Alternative Option where
  empty = Option Nothing
  Option Nothing <|> b = b
  a <|> _ = a
instance MonadPlus Option where
  mzero = empty
  mplus = (<|>)
instance MonadFix Option where
  mfix f = Option (mfix (getOption . f))
instance Foldable Option where
  foldMap f (Option (Just m)) = f m
  foldMap _ (Option Nothing)  = mempty
instance Traversable Option where
  traverse f (Option (Just a)) = Option . Just <$> f a
  traverse _ (Option Nothing)  = pure (Option Nothing)
  
option :: b -> (a -> b) -> Option a -> b
option n j (Option m) = maybe n j m
instance Semigroup a => Semigroup (Option a) where
  Option a <> Option b = Option (a <> b) 
instance Semigroup a => Monoid (Option a) where
  mempty = empty
  Option a `mappend` Option b = Option (a <> b)
diff :: Semigroup m => m -> Endo m
diff = Endo . (<>)
instance Semigroup (Seq a) where
  (<>) = (><)
instance Semigroup IntSet where
  (<>) = mappend
  replicate1p _ a = a 
instance Ord a => Semigroup (Set a) where
  (<>) = mappend
  replicate1p _ a = a 
instance Semigroup (IntMap v) where
  (<>) = mappend
  replicate1p _ a = a 
instance Ord k => Semigroup (Map k v) where
  (<>) = mappend
  replicate1p _ a = a