{-# LANGUAGE CPP #-} #ifdef LANGUAGE_DeriveDataTypeable {-# LANGUAGE DeriveDataTypeable #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Semigroup -- Copyright : (C) 2011 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- In mathematics, a semigroup is an algebraic structure consisting of a -- set together with an associative binary operation. A semigroup -- generalizes a monoid in that there might not exist an identity -- element. It also (originally) generalized a group (a monoid with all -- inverses) to a type where every element did not have to have an inverse, -- thus the name semigroup. -- -- The use of @(\<\>)@ in this module conflicts with an operator with the same -- name that is being exported by Data.Monoid. However, this package -- re-exports (most of) the contents of Data.Monoid, so to use semigroups -- and monoids in the same package just -- -- > import Data.Semigroup -- ---------------------------------------------------------------------------- module Data.Semigroup ( Semigroup(..) -- * Semigroups , Min(..) , Max(..) , First(..) , Last(..) , WrappedMonoid(..) -- * Re-exported monoids from Data.Monoid , Monoid(..) , Dual(..) , Endo(..) , All(..) , Any(..) , Sum(..) , Product(..) -- * A better monoid for Maybe , Option(..) , option -- * Difference lists of a semigroup , diff , cycle1 ) where import Prelude hiding (foldr1) import Data.Monoid (Monoid(..),Dual(..),Endo(..),All(..),Any(..),Sum(..),Product(..),Endo(..)) import Control.Applicative import Control.Monad import Control.Monad.Fix import qualified Data.Monoid as Monoid import Data.Foldable import Data.Traversable import Data.List.NonEmpty import Numeric.Natural.Internal import Data.Sequence (Seq, (><)) import Data.Set (Set) import Data.IntSet (IntSet) import Data.Map (Map) import Data.IntMap (IntMap) #ifdef LANGUAGE_DeriveDataTypeable import Data.Data #endif infixr 6 <> class Semigroup a where -- | An associative operation. -- -- > (a <> b) <> c = a <> (b <> c) (<>) :: a -> a -> a -- | Reduce a non-empty list with @\<\>@ -- -- The default definition should be sufficient, but this can be overridden for efficiency. -- sconcat :: NonEmpty a -> a sconcat (a :| as) = go a as where go b (c:cs) = b <> go c cs go b [] = b -- | Repeat a value (n + 1) times. -- -- > times1p n a = a <> a <> ... <> a -- using <> n times -- -- The default definition uses peasant multiplication, exploiting associativity to only -- require /O(log n)/ uses of @\<\>@. times1p :: Whole n => n -> a -> a times1p y0 x0 = f x0 (1 Prelude.+ y0) where f x y | even y = f (x <> x) (y `quot` 2) | y == 1 = x | otherwise = g (x <> x) (unsafePred y `quot` 2) x g x y z | even y = g (x <> x) (y `quot` 2) z | y == 1 = x <> z | otherwise = g (x <> x) (unsafePred y `quot` 2) (x <> z) {-# INLINE times1p #-} -- | A generalization of 'Data.List.cycle' to an arbitrary 'Semigroup'. -- May fail to terminate for some values in some semigroups. cycle1 :: Semigroup m => m -> m cycle1 xs = xs' where xs' = xs <> xs' instance Semigroup () where _ <> _ = () sconcat _ = () times1p _ _ = () instance Semigroup b => Semigroup (a -> b) where f <> g = \a -> f a <> g a times1p n f e = times1p n (f e) instance Semigroup [a] where (<>) = (++) instance Semigroup a => Semigroup (Maybe a) where Nothing <> b = b a <> Nothing = a Just a <> Just b = Just (a <> b) instance Semigroup (Either a b) where Left _ <> b = b a <> _ = a instance (Semigroup a, Semigroup b) => Semigroup (a, b) where (a,b) <> (a',b') = (a<>a',b<>b') times1p n (a,b) = (times1p n a, times1p n b) instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where (a,b,c) <> (a',b',c') = (a<>a',b<>b',c<>c') times1p n (a,b,c) = (times1p n a, times1p n b, times1p n c) instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) where (a,b,c,d) <> (a',b',c',d') = (a<>a',b<>b',c<>c',d<>d') times1p n (a,b,c,d) = (times1p n a, times1p n b, times1p n c, times1p n d) instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) where (a,b,c,d,e) <> (a',b',c',d',e') = (a<>a',b<>b',c<>c',d<>d',e<>e') times1p n (a,b,c,d,e) = (times1p n a, times1p n b, times1p n c, times1p n d, times1p n e) instance Semigroup a => Semigroup (Dual a) where Dual a <> Dual b = Dual (b <> a) times1p n (Dual a) = Dual (times1p n a) instance Semigroup (Endo a) where Endo f <> Endo g = Endo (f . g) instance Semigroup All where All a <> All b = All (a && b) times1p _ a = a instance Semigroup Any where Any a <> Any b = Any (a || b) times1p _ a = a instance Num a => Semigroup (Sum a) where Sum a <> Sum b = Sum (a + b) instance Num a => Semigroup (Product a) where Product a <> Product b = Product (a * b) #if MIN_VERSION_base(3,0,0) instance Semigroup (Monoid.First a) where Monoid.First Nothing <> b = b a <> _ = a times1p _ a = a instance Semigroup (Monoid.Last a) where a <> Monoid.Last Nothing = a _ <> b = b times1p _ a = a #endif instance Semigroup (NonEmpty a) where (a :| as) <> ~(b :| bs) = a :| (as ++ b : bs) newtype Min a = Min { getMin :: a } deriving ( Eq, Ord, Bounded, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data, Typeable #endif ) instance Ord a => Semigroup (Min a) where Min a <> Min b = Min (a `min` b) times1p _ a = a instance (Ord a, Bounded a) => Monoid (Min a) where mempty = maxBound mappend = (<>) newtype Max a = Max { getMax :: a } deriving ( Eq, Ord, Bounded, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data, Typeable #endif ) instance Ord a => Semigroup (Max a) where Max a <> Max b = Max (a `max` b) times1p _ a = a instance (Ord a, Bounded a) => Monoid (Max a) where mempty = minBound mappend = (<>) -- | Use @'Option' ('First' a)@ -- to get the behavior of 'Data.Monoid.First' newtype First a = First { getFirst :: a } deriving ( Eq, Ord, Bounded, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data , Typeable #endif ) instance Semigroup (First a) where a <> _ = a times1p _ a = a -- | Use @'Option' ('Last' a)@ -- to get the behavior of 'Data.Monoid.Last' newtype Last a = Last { getLast :: a } deriving ( Eq, Ord, Bounded, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data, Typeable #endif ) instance Semigroup (Last a) where _ <> b = b times1p _ a = a -- (==)/XNOR on Bool forms a 'Semigroup', but has no good name -- | Provide a Semigroup for an arbitrary Monoid. newtype WrappedMonoid m = WrapMonoid { unwrapMonoid :: m } deriving ( Eq, Ord, Bounded, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data, Typeable #endif ) instance Monoid m => Semigroup (WrappedMonoid m) where WrapMonoid a <> WrapMonoid b = WrapMonoid (a `mappend` b) instance Monoid m => Monoid (WrappedMonoid m) where mempty = WrapMonoid mempty WrapMonoid a `mappend` WrapMonoid b = WrapMonoid (a `mappend` b) -- | Option is effectively 'Maybe' with a better instance of 'Monoid', built off of an underlying 'Semigroup' -- instead of an underlying 'Monoid'. Ideally, this type would not exist at all and we would just fix the 'Monoid' intance of 'Maybe' newtype Option a = Option { getOption :: Maybe a } deriving ( Eq, Ord, Show, Read #ifdef LANGUAGE_DeriveDataTypeable , Data, Typeable #endif ) instance Functor Option where fmap f (Option a) = Option (fmap f a) instance Applicative Option where pure a = Option (Just a) Option a <*> Option b = Option (a <*> b) instance Monad Option where return = pure Option (Just a) >>= k = k a _ >>= _ = Option Nothing Option Nothing >> _ = Option Nothing _ >> b = b instance Alternative Option where empty = Option Nothing Option Nothing <|> b = b a <|> _ = a instance MonadPlus Option where mzero = empty mplus = (<|>) instance MonadFix Option where mfix f = Option (mfix (getOption . f)) instance Foldable Option where foldMap f (Option (Just m)) = f m foldMap _ (Option Nothing) = mempty instance Traversable Option where traverse f (Option (Just a)) = Option . Just <$> f a traverse _ (Option Nothing) = pure (Option Nothing) option :: b -> (a -> b) -> Option a -> b option n j (Option m) = maybe n j m instance Semigroup a => Semigroup (Option a) where Option a <> Option b = Option (a <> b) instance Semigroup a => Monoid (Option a) where mempty = empty Option a `mappend` Option b = Option (a <> b) -- | This lets you use a difference list of a Semigroup as a Monoid. diff :: Semigroup m => m -> Endo m diff = Endo . (<>) instance Semigroup (Seq a) where (<>) = (><) instance Semigroup IntSet where (<>) = mappend times1p _ a = a instance Ord a => Semigroup (Set a) where (<>) = mappend times1p _ a = a instance Semigroup (IntMap v) where (<>) = mappend times1p _ a = a instance Ord k => Semigroup (Map k v) where (<>) = mappend times1p _ a = a