/** * @file SFMT.c * @brief SIMD oriented Fast Mersenne Twister(SFMT) * * @author Mutsuo Saito (Hiroshima University) * @author Makoto Matsumoto (Hiroshima University) * * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima * University. * Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima * University and The University of Tokyo. * Copyright (C) 2013 Mutsuo Saito, Makoto Matsumoto and Hiroshima * University. * All rights reserved. * * The 3-clause BSD License is applied to this software, see * LICENSE.txt */ #if defined(__cplusplus) extern "C" { #endif #include #include #include "SFMT.h" #include "SFMT-params.h" #include "SFMT-common.h" #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64) #define BIG_ENDIAN64 1 #endif #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64) #define BIG_ENDIAN64 1 #endif #if defined(ONLY64) && !defined(BIG_ENDIAN64) #if defined(__GNUC__) #error "-DONLY64 must be specified with -DBIG_ENDIAN64" #endif #undef ONLY64 #endif /** * parameters used by sse2. */ static const w128_t sse2_param_mask = {{SFMT_MSK1, SFMT_MSK2, SFMT_MSK3, SFMT_MSK4}}; /*---------------- STATIC FUNCTIONS ----------------*/ inline static int idxof(int i); inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size); inline static uint32_t func1(uint32_t x); inline static uint32_t func2(uint32_t x); static void period_certification(sfmt_t * sfmt); #if defined(BIG_ENDIAN64) && !defined(ONLY64) inline static void swap(w128_t *array, int size); #endif #if defined(HAVE_ALTIVEC) #include "SFMT-alti.h" #elif defined(HAVE_SSE2) #if defined(_MSC_VER) #include "SFMT-sse2-msc.h" #else #include "SFMT-sse2.h" #endif #endif /** * This function simulate a 64-bit index of LITTLE ENDIAN * in BIG ENDIAN machine. */ #ifdef ONLY64 inline static int idxof(int i) { return i ^ 1; } #else inline static int idxof(int i) { return i; } #endif #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) /** * This function fills the user-specified array with pseudorandom * integers. * * @param sfmt SFMT internal state * @param array an 128-bit array to be filled by pseudorandom numbers. * @param size number of 128-bit pseudorandom numbers to be generated. */ inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) { int i, j; w128_t *r1, *r2; r1 = &sfmt->state[SFMT_N - 2]; r2 = &sfmt->state[SFMT_N - 1]; for (i = 0; i < SFMT_N - SFMT_POS1; i++) { do_recursion(&array[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2); r1 = r2; r2 = &array[i]; } for (; i < SFMT_N; i++) { do_recursion(&array[i], &sfmt->state[i], &array[i + SFMT_POS1 - SFMT_N], r1, r2); r1 = r2; r2 = &array[i]; } for (; i < size - SFMT_N; i++) { do_recursion(&array[i], &array[i - SFMT_N], &array[i + SFMT_POS1 - SFMT_N], r1, r2); r1 = r2; r2 = &array[i]; } for (j = 0; j < 2 * SFMT_N - size; j++) { sfmt->state[j] = array[j + size - SFMT_N]; } for (; i < size; i++, j++) { do_recursion(&array[i], &array[i - SFMT_N], &array[i + SFMT_POS1 - SFMT_N], r1, r2); r1 = r2; r2 = &array[i]; sfmt->state[j] = array[i]; } } #endif #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC) inline static void swap(w128_t *array, int size) { int i; uint32_t x, y; for (i = 0; i < size; i++) { x = array[i].u[0]; y = array[i].u[2]; array[i].u[0] = array[i].u[1]; array[i].u[2] = array[i].u[3]; array[i].u[1] = x; array[i].u[3] = y; } } #endif /** * This function represents a function used in the initialization * by init_by_array * @param x 32-bit integer * @return 32-bit integer */ static uint32_t func1(uint32_t x) { return (x ^ (x >> 27)) * (uint32_t)1664525UL; } /** * This function represents a function used in the initialization * by init_by_array * @param x 32-bit integer * @return 32-bit integer */ static uint32_t func2(uint32_t x) { return (x ^ (x >> 27)) * (uint32_t)1566083941UL; } /** * This function certificate the period of 2^{MEXP} * @param sfmt SFMT internal state */ static void period_certification(sfmt_t * sfmt) { int inner = 0; int i, j; uint32_t work; uint32_t *psfmt32 = &sfmt->state[0].u[0]; const uint32_t parity[4] = {SFMT_PARITY1, SFMT_PARITY2, SFMT_PARITY3, SFMT_PARITY4}; for (i = 0; i < 4; i++) inner ^= psfmt32[idxof(i)] & parity[i]; for (i = 16; i > 0; i >>= 1) inner ^= inner >> i; inner &= 1; /* check OK */ if (inner == 1) { return; } /* check NG, and modification */ for (i = 0; i < 4; i++) { work = 1; for (j = 0; j < 32; j++) { if ((work & parity[i]) != 0) { psfmt32[idxof(i)] ^= work; return; } work = work << 1; } } } /*---------------- PUBLIC FUNCTIONS ----------------*/ #define UNUSED_VARIABLE(x) (void)(x) /** * This function returns the identification string. * The string shows the word size, the Mersenne exponent, * and all parameters of this generator. * @param sfmt SFMT internal state */ const char *sfmt_get_idstring(sfmt_t * sfmt) { UNUSED_VARIABLE(sfmt); return SFMT_IDSTR; } /** * This function returns the minimum size of array used for \b * fill_array32() function. * @param sfmt SFMT internal state * @return minimum size of array used for fill_array32() function. */ int sfmt_get_min_array_size32(sfmt_t * sfmt) { UNUSED_VARIABLE(sfmt); return SFMT_N32; } /** * This function returns the minimum size of array used for \b * fill_array64() function. * @param sfmt SFMT internal state * @return minimum size of array used for fill_array64() function. */ int sfmt_get_min_array_size64(sfmt_t * sfmt) { UNUSED_VARIABLE(sfmt); return SFMT_N64; } #if !defined(HAVE_SSE2) && !defined(HAVE_ALTIVEC) /** * This function fills the internal state array with pseudorandom * integers. * @param sfmt SFMT internal state */ void sfmt_gen_rand_all(sfmt_t * sfmt) { int i; w128_t *r1, *r2; r1 = &sfmt->state[SFMT_N - 2]; r2 = &sfmt->state[SFMT_N - 1]; for (i = 0; i < SFMT_N - SFMT_POS1; i++) { do_recursion(&sfmt->state[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2); r1 = r2; r2 = &sfmt->state[i]; } for (; i < SFMT_N; i++) { do_recursion(&sfmt->state[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1 - SFMT_N], r1, r2); r1 = r2; r2 = &sfmt->state[i]; } } #endif #ifndef ONLY64 /** * This function generates pseudorandom 32-bit integers in the * specified array[] by one call. The number of pseudorandom integers * is specified by the argument size, which must be at least 624 and a * multiple of four. The generation by this function is much faster * than the following gen_rand function. * * For initialization, init_gen_rand or init_by_array must be called * before the first call of this function. This function can not be * used after calling gen_rand function, without initialization. * * @param sfmt SFMT internal state * @param array an array where pseudorandom 32-bit integers are filled * by this function. The pointer to the array must be \b "aligned" * (namely, must be a multiple of 16) in the SIMD version, since it * refers to the address of a 128-bit integer. In the standard C * version, the pointer is arbitrary. * * @param size the number of 32-bit pseudorandom integers to be * generated. size must be a multiple of 4, and greater than or equal * to (MEXP / 128 + 1) * 4. * * @note \b memalign or \b posix_memalign is available to get aligned * memory. Mac OSX doesn't have these functions, but \b malloc of OSX * returns the pointer to the aligned memory block. */ void sfmt_fill_array32(sfmt_t * sfmt, uint32_t *array, int size) { assert(sfmt->idx == SFMT_N32); assert(size % 4 == 0); assert(size >= SFMT_N32); gen_rand_array(sfmt, (w128_t *)array, size / 4); sfmt->idx = SFMT_N32; } #endif /** * This function generates pseudorandom 64-bit integers in the * specified array[] by one call. The number of pseudorandom integers * is specified by the argument size, which must be at least 312 and a * multiple of two. The generation by this function is much faster * than the following gen_rand function. * * @param sfmt SFMT internal state * For initialization, init_gen_rand or init_by_array must be called * before the first call of this function. This function can not be * used after calling gen_rand function, without initialization. * * @param array an array where pseudorandom 64-bit integers are filled * by this function. The pointer to the array must be "aligned" * (namely, must be a multiple of 16) in the SIMD version, since it * refers to the address of a 128-bit integer. In the standard C * version, the pointer is arbitrary. * * @param size the number of 64-bit pseudorandom integers to be * generated. size must be a multiple of 2, and greater than or equal * to (MEXP / 128 + 1) * 2 * * @note \b memalign or \b posix_memalign is available to get aligned * memory. Mac OSX doesn't have these functions, but \b malloc of OSX * returns the pointer to the aligned memory block. */ void sfmt_fill_array64(sfmt_t * sfmt, uint64_t *array, int size) { assert(sfmt->idx == SFMT_N32); assert(size % 2 == 0); assert(size >= SFMT_N64); gen_rand_array(sfmt, (w128_t *)array, size / 2); sfmt->idx = SFMT_N32; #if defined(BIG_ENDIAN64) && !defined(ONLY64) swap((w128_t *)array, size /2); #endif } /** * This function initializes the internal state array with a 32-bit * integer seed. * * @param sfmt SFMT internal state * @param seed a 32-bit integer used as the seed. */ void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed) { int i; uint32_t *psfmt32 = &sfmt->state[0].u[0]; psfmt32[idxof(0)] = seed; for (i = 1; i < SFMT_N32; i++) { psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)] ^ (psfmt32[idxof(i - 1)] >> 30)) + i; } sfmt->idx = SFMT_N32; period_certification(sfmt); } /** * This function initializes the internal state array, * with an array of 32-bit integers used as the seeds * @param sfmt SFMT internal state * @param init_key the array of 32-bit integers, used as a seed. * @param key_length the length of init_key. */ void sfmt_init_by_array(sfmt_t * sfmt, uint32_t *init_key, int key_length) { int i, j, count; uint32_t r; int lag; int mid; int size = SFMT_N * 4; uint32_t *psfmt32 = &sfmt->state[0].u[0]; if (size >= 623) { lag = 11; } else if (size >= 68) { lag = 7; } else if (size >= 39) { lag = 5; } else { lag = 3; } mid = (size - lag) / 2; memset(sfmt, 0x8b, sizeof(sfmt_t)); if (key_length + 1 > SFMT_N32) { count = key_length + 1; } else { count = SFMT_N32; } r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)] ^ psfmt32[idxof(SFMT_N32 - 1)]); psfmt32[idxof(mid)] += r; r += key_length; psfmt32[idxof(mid + lag)] += r; psfmt32[idxof(0)] = r; count--; for (i = 1, j = 0; (j < count) && (j < key_length); j++) { r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)] ^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]); psfmt32[idxof((i + mid) % SFMT_N32)] += r; r += init_key[j] + i; psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r; psfmt32[idxof(i)] = r; i = (i + 1) % SFMT_N32; } for (; j < count; j++) { r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)] ^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]); psfmt32[idxof((i + mid) % SFMT_N32)] += r; r += i; psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r; psfmt32[idxof(i)] = r; i = (i + 1) % SFMT_N32; } for (j = 0; j < SFMT_N32; j++) { r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % SFMT_N32)] + psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]); psfmt32[idxof((i + mid) % SFMT_N32)] ^= r; r -= i; psfmt32[idxof((i + mid + lag) % SFMT_N32)] ^= r; psfmt32[idxof(i)] = r; i = (i + 1) % SFMT_N32; } sfmt->idx = SFMT_N32; period_certification(sfmt); } #if defined(__cplusplus) } #endif