{-# LANGUAGE RecordWildCards, ScopedTypeVariables, PatternGuards #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE TypeFamilies #-} module Development.Shake.Internal.Core.Run( run, Action, actionOnException, actionFinally, apply, apply1, traced, getDatabaseValue, getShakeOptions, getProgress, getVerbosity, putLoud, putNormal, putQuiet, withVerbosity, quietly, Resource, newResourceIO, withResource, newThrottleIO, newCacheIO, unsafeExtraThread, unsafeAllowApply, parallel, orderOnlyAction, batch, runAfter ) where import Control.Exception import Control.Applicative import Data.Tuple.Extra import Control.Concurrent.Extra import Control.Monad.Extra import Control.Monad.IO.Class import Data.Typeable.Extra import Data.Function import Data.Either.Extra import Data.List.Extra import qualified Data.HashMap.Strict as Map import Data.Dynamic import Data.Maybe import Data.IORef import System.Directory import System.IO.Extra import System.Time.Extra import Numeric.Extra import qualified Data.ByteString as BS import Development.Shake.Classes import Development.Shake.Internal.Core.Types import Development.Shake.Internal.Core.Action import Development.Shake.Internal.Core.Rules import Development.Shake.Internal.Core.Pool import Development.Shake.Internal.Core.Database import Development.Shake.Internal.Core.Monad import Development.Shake.Internal.Resource import Development.Shake.Internal.Value import Development.Shake.Internal.Profile import Development.Shake.Internal.Options import Development.Shake.Internal.Errors import General.Timing import General.Extra import General.Concurrent import General.Cleanup import Prelude --------------------------------------------------------------------- -- MAKE -- | Internal main function (not exported publicly) run :: ShakeOptions -> Rules () -> IO () run opts@ShakeOptions{..} rs = (if shakeLineBuffering then withLineBuffering else id) $ do opts@ShakeOptions{..} <- if shakeThreads /= 0 then return opts else do p <- getProcessorCount; return opts{shakeThreads=p} start <- offsetTime (actions, ruleinfo, userRules) <- runRules opts rs outputLocked <- do lock <- newLock return $ \v msg -> withLock lock $ shakeOutput v msg let diagnostic | shakeVerbosity < Diagnostic = const $ return () | otherwise = \act -> do v <- act; outputLocked Diagnostic $ "% " ++ v let output v = outputLocked v . shakeAbbreviationsApply opts diagnostic $ return "Starting run" except <- newIORef (Nothing :: Maybe (String, ShakeException)) let raiseError err | not shakeStaunch = throwIO err | otherwise = do let named = shakeAbbreviationsApply opts . shakeExceptionTarget atomicModifyIORef except $ \v -> (Just $ fromMaybe (named err, err) v, ()) -- no need to print exceptions here, they get printed when they are wrapped curdir <- getCurrentDirectory diagnostic $ return "Starting run 2" checkShakeExtra shakeExtra after <- newIORef [] absent <- newIORef [] withCleanup $ \cleanup -> do addCleanup_ cleanup $ do when (shakeTimings && shakeVerbosity >= Normal) printTimings resetTimings -- so we don't leak memory withNumCapabilities shakeThreads $ do diagnostic $ return "Starting run 3" withDatabase opts diagnostic (Map.map builtinKey ruleinfo) $ \database -> do wait <- newBarrier let getProgress = do failure <- fmap fst <$> readIORef except stats <- progress database return stats{isFailure=failure} tid <- flip forkFinally (const $ signalBarrier wait ()) $ shakeProgress getProgress addCleanup_ cleanup $ do killThread tid void $ timeout 1 $ waitBarrier wait addTiming "Running rules" runPool (shakeThreads == 1) shakeThreads $ \pool -> do let s0 = Global database pool cleanup start ruleinfo output opts diagnostic curdir after absent getProgress userRules let s1 = newLocal emptyStack shakeVerbosity forM_ actions $ \act -> addPoolStart pool $ runAction s0 s1 act $ \x -> case x of Left e -> raiseError =<< shakeException s0 ["Top-level action/want"] e Right x -> return x maybe (return ()) (throwIO . snd) =<< readIORef except assertFinishedDatabase database let putWhen lvl msg = when (shakeVerbosity >= lvl) $ output lvl msg when (null actions) $ putWhen Normal "Warning: No want/action statements, nothing to do" when (isJust shakeLint) $ do addTiming "Lint checking" lintCurrentDirectory curdir "After completion" absent <- readIORef absent checkValid database (runLint ruleinfo) absent putWhen Loud "Lint checking succeeded" when (shakeReport /= []) $ do addTiming "Profile report" report <- toReport database forM_ shakeReport $ \file -> do putWhen Normal $ "Writing report to " ++ file writeProfile file report when (shakeLiveFiles /= []) $ do addTiming "Listing live" live <- listLive database let specialIsFileKey t = show (fst $ splitTyConApp t) == "FileQ" let liveFiles = [show k | k <- live, specialIsFileKey $ typeKey k] forM_ shakeLiveFiles $ \file -> do putWhen Normal $ "Writing live list to " ++ file (if file == "-" then putStr else writeFile file) $ unlines liveFiles after <- readIORef after unless (null after) $ do addTiming "Running runAfter" sequence_ $ reverse after checkShakeExtra :: Map.HashMap TypeRep Dynamic -> IO () checkShakeExtra mp = do let bad = [(k,t) | (k,v) <- Map.toList mp, let t = dynTypeRep v, t /= k] case bad of (k,t):xs -> errorStructured "Invalid Map in shakeExtra" [("Key",Just $ show k),("Value type",Just $ show t)] (if null xs then "" else "Plus " ++ show (length xs) ++ " other keys") _ -> return () lintCurrentDirectory :: FilePath -> String -> IO () lintCurrentDirectory old msg = do now <- getCurrentDirectory when (old /= now) $ errorStructured "Lint checking error - current directory has changed" [("When", Just msg) ,("Wanted",Just old) ,("Got",Just now)] "" withLineBuffering :: IO a -> IO a withLineBuffering act = do -- instead of withBuffering avoid two finally handlers and stack depth out <- hGetBuffering stdout err <- hGetBuffering stderr if out == LineBuffering && err == LineBuffering then act else do hSetBuffering stdout LineBuffering hSetBuffering stderr LineBuffering act `finally` do hSetBuffering stdout out hSetBuffering stderr err getDatabaseValue :: (RuleResult key ~ value, ShakeValue key, Typeable value) => key -> Action (Maybe (Either BS.ByteString value)) getDatabaseValue k = do global@Global{..} <- Action getRO liftIO $ fmap (fmap $ fmap fromValue) $ lookupStatus globalDatabase $ newKey k -- | Execute a rule, returning the associated values. If possible, the rules will be run in parallel. -- This function requires that appropriate rules have been added with 'addUserRule'. -- All @key@ values passed to 'apply' become dependencies of the 'Action'. apply :: (RuleResult key ~ value, ShakeValue key, Typeable value) => [key] -> Action [value] -- Don't short-circuit [] as we still want error messages apply (ks :: [key]) = withResultType $ \(p :: Maybe (Action [value])) -> do -- this is the only place a user can inject a key into our world, so check they aren't throwing -- in unevaluated bottoms liftIO $ mapM_ (evaluate . rnf) ks let tk = typeRep (Proxy :: Proxy key) tv = typeRep (Proxy :: Proxy value) Global{..} <- Action getRO block <- Action $ getsRW localBlockApply whenJust block $ liftIO . errorNoApply tk (show <$> listToMaybe ks) case Map.lookup tk globalRules of Nothing -> liftIO $ errorNoRuleToBuildType tk (show <$> listToMaybe ks) (Just tv) Just BuiltinRule{builtinResult=tv2} | tv /= tv2 -> errorInternal $ "result type does not match, " ++ show tv ++ " vs " ++ show tv2 _ -> fmap (map fromValue) $ applyKeyValue $ map newKey ks applyKeyValue :: [Key] -> Action [Value] applyKeyValue [] = return [] applyKeyValue ks = do global@Global{..} <- Action getRO stack <- Action $ getsRW localStack (dur, dep, vs) <- Action $ captureRAW $ build globalPool globalDatabase (BuildKey $ runKey global) stack ks Action $ modifyRW $ \s -> s{localDiscount=localDiscount s + dur, localDepends=dep : localDepends s} return vs runKey :: Global -> Stack -> Step -> Key -> Maybe (Result BS.ByteString) -> Bool -> Capture (Either SomeException (Bool, BS.ByteString, Result Value)) runKey global@Global{globalOptions=ShakeOptions{..},..} stack step k r dirtyChildren continue = do let tk = typeKey k BuiltinRule{..} <- case Map.lookup tk globalRules of Nothing -> errorNoRuleToBuildType tk (Just $ show k) Nothing Just r -> return r let s = newLocal stack shakeVerbosity time <- offsetTime runAction global s (do res <- builtinRun k (fmap result r) dirtyChildren liftIO $ evaluate $ rnf res when (Just LintFSATrace == shakeLint) trackCheckUsed Action $ fmap ((,) res) getRW) $ \x -> case x of Left e -> do e <- if isNothing shakeLint then return e else handle return $ do lintCurrentDirectory globalCurDir $ "Running " ++ show k; return e continue . Left . toException =<< shakeException global (showStack stack) e Right (RunResult{..}, Local{..}) | runChanged == ChangedNothing || runChanged == ChangedStore, Just r <- r -> continue $ Right (runChanged == ChangedStore, runStore, r{result = runValue}) | otherwise -> do dur <- time let c | Just r <- r, runChanged == ChangedRecomputeSame = changed r | otherwise = step continue $ Right $ (,,) True runStore Result {result = runValue ,changed = c ,built = step ,depends = nubDepends $ reverse localDepends ,execution = doubleToFloat $ dur - localDiscount ,traces = reverse localTraces} runLint :: Map.HashMap TypeRep BuiltinRule -> Key -> Value -> IO (Maybe String) runLint mp k v = case Map.lookup (typeKey k) mp of Nothing -> return Nothing Just BuiltinRule{..} -> builtinLint k v -- | Turn a normal exception into a ShakeException, giving it a stack and printing it out if in staunch mode. -- If the exception is already a ShakeException (e.g. it's a child of ours who failed and we are rethrowing) -- then do nothing with it. shakeException :: Global -> [String] -> SomeException -> IO ShakeException shakeException Global{globalOptions=ShakeOptions{..},..} stk e@(SomeException inner) = case cast inner of Just e@ShakeException{} -> return e Nothing -> do e <- return $ ShakeException (last $ "Unknown call stack" : stk) stk e when (shakeStaunch && shakeVerbosity >= Quiet) $ globalOutput Quiet $ show e ++ "Continuing due to staunch mode" return e -- | Apply a single rule, equivalent to calling 'apply' with a singleton list. Where possible, -- use 'apply' to allow parallelism. apply1 :: (RuleResult key ~ value, ShakeValue key, Typeable value) => key -> Action value apply1 = fmap head . apply . return --------------------------------------------------------------------- -- RESOURCES -- | Run an action which uses part of a finite resource. For more details see 'Resource'. -- You cannot depend on a rule (e.g. 'need') while a resource is held. withResource :: Resource -> Int -> Action a -> Action a withResource r i act = do Global{..} <- Action getRO liftIO $ globalDiagnostic $ return $ show r ++ " waiting to acquire " ++ show i offset <- liftIO offsetTime Action $ captureRAW $ \continue -> acquireResource r globalPool i $ continue $ Right () res <- Action $ tryRAW $ fromAction $ blockApply ("Within withResource using " ++ show r) $ do offset <- liftIO offset liftIO $ globalDiagnostic $ return $ show r ++ " acquired " ++ show i ++ " in " ++ showDuration offset Action $ modifyRW $ \s -> s{localDiscount = localDiscount s + offset} act liftIO $ releaseResource r globalPool i liftIO $ globalDiagnostic $ return $ show r ++ " released " ++ show i Action $ either throwRAW return res -- | A version of 'Development.Shake.newCache' that runs in IO, and can be called before calling 'Development.Shake.shake'. -- Most people should use 'Development.Shake.newCache' instead. newCacheIO :: (Eq k, Hashable k) => (k -> Action v) -> IO (k -> Action v) newCacheIO (act :: k -> Action v) = do var :: Var (Map.HashMap k (Fence (Either SomeException ([Depends],v)))) <- newVar Map.empty return $ \key -> join $ liftIO $ modifyVar var $ \mp -> case Map.lookup key mp of Just bar -> return $ (,) mp $ do res <- liftIO $ testFence bar (res,offset) <- case res of Just res -> return (res, 0) Nothing -> do pool <- Action $ getsRO globalPool offset <- liftIO offsetTime Action $ captureRAW $ \k -> waitFence bar $ \v -> addPoolResume pool $ do offset <- liftIO offset; k $ Right (v,offset) case res of Left err -> Action $ throwRAW err Right (deps,v) -> do Action $ modifyRW $ \s -> s{localDepends = deps ++ localDepends s, localDiscount = localDiscount s + offset} return v Nothing -> do bar <- newFence return $ (,) (Map.insert key bar mp) $ do pre <- Action $ getsRW localDepends res <- Action $ tryRAW $ fromAction $ act key case res of Left err -> do liftIO $ signalFence bar $ Left err Action $ throwRAW err Right v -> do post <- Action $ getsRW localDepends let deps = take (length post - length pre) post liftIO $ signalFence bar $ Right (deps, v) return v -- | Run an action without counting to the thread limit, typically used for actions that execute -- on remote machines using barely any local CPU resources. -- Unsafe as it allows the 'shakeThreads' limit to be exceeded. -- You cannot depend on a rule (e.g. 'need') while the extra thread is executing. -- If the rule blocks (e.g. calls 'withResource') then the extra thread may be used by some other action. -- Only really suitable for calling 'cmd' / 'command'. unsafeExtraThread :: Action a -> Action a unsafeExtraThread act = Action $ do Global{..} <- getRO stop <- liftIO $ increasePool globalPool res <- tryRAW $ fromAction $ blockApply "Within unsafeExtraThread" act liftIO stop captureRAW $ \continue -> (if isLeft res then addPoolException else addPoolResume) globalPool $ continue res -- | Execute a list of actions in parallel. In most cases 'need' will be more appropriate to benefit from parallelism. parallel :: [Action a] -> Action [a] -- Note: There is no parallel_ unlike sequence_ because there is no stack benefit to doing so parallel [] = return [] parallel [x] = fmap return x parallel acts = Action $ do global@Global{..} <- getRO local <- getRW -- number of items still to complete, or Nothing for has completed (by either failure or completion) todo :: Var (Maybe Int) <- liftIO $ newVar $ Just $ length acts -- a list of refs where the results go results :: [IORef (Maybe (Either SomeException (Local, a)))] <- liftIO $ replicateM (length acts) $ newIORef Nothing (locals, results) <- captureRAW $ \continue -> do let resume = do res <- liftIO $ sequence . catMaybes <$> mapM readIORef results continue $ fmap unzip res liftIO $ forM_ (zip acts results) $ \(act, result) -> do let act2 = do whenM (liftIO $ isNothing <$> readVar todo) $ fail "parallel, one has already failed" res <- act old <- Action getRW return (old, res) addPoolResume globalPool $ runAction global (localClearMutable local) act2 $ \res -> do writeIORef result $ Just res modifyVar_ todo $ \v -> case v of Nothing -> return Nothing Just i | i == 1 || isLeft res -> do resume; return Nothing Just i -> return $ Just $ i - 1 modifyRW $ \root -> localMergeMutable root locals return results -- | Run an action but do not depend on anything the action uses. -- A more general version of 'orderOnly'. orderOnlyAction :: Action a -> Action a orderOnlyAction act = Action $ do pre <- getsRW localDepends res <- fromAction act modifyRW $ \s -> s{localDepends=pre} return res -- | Batch different outputs into a single 'Action', typically useful when a command has a high -- startup cost - e.g. @apt-get install foo bar baz@ is a lot cheaper than three separate -- calls to @apt-get install@. As an example, if we have a standard build rule: -- -- @ -- \"*.out\" 'Development.Shake.%>' \\out -> do -- 'Development.Shake.need' [out '-<.>' \"in\"] -- 'Development.Shake.cmd' "build-multiple" [out '-<.>' \"in\"] -- @ -- -- Assuming that @build-multiple@ can compile multiple files in a single run, -- and that the cost of doing so is a lot less than running each individually, -- we can write: -- -- @ -- 'batch' 3 (\"*.out\" 'Development.Shake.%>') -- (\\out -> do 'Development.Shake.need' [out '-<.>' \"in\"]; return out) -- (\\outs -> 'Development.Shake.cmd' "build-multiple" [out '-<.>' \"in\" | out \<- outs]) -- @ -- -- In constrast to the normal call, we have specified a maximum batch size of 3, -- an action to run on each output individually (typically all the 'need' dependencies), -- and an action that runs on multiple files at once. If we were to require lots of -- @*.out@ files, they would typically be built in batches of 3. -- -- If Shake ever has nothing else to do it will run batches before they are at the maximum, -- so you may see much smaller batches, especially at high parallelism settings. batch :: Int -> ((a -> Action ()) -> Rules ()) -> (a -> Action b) -> ([b] -> Action ()) -> Rules () batch mx pred one many | mx <= 0 = error $ "Can't call batchable with <= 0, you used " ++ show mx | mx == 1 = pred $ \a -> do b <- one a; many [b] | otherwise = do todo :: IORef (Int, [(b, Either SomeException Local -> IO ())]) <- liftIO $ newIORef (0, []) pred $ \a -> Action $ do b <- fromAction $ one a -- optimisation would be to avoid taking the continuation if count >= mx -- but it only saves one pool requeue per mx, which is likely to be trivial -- and the code becomes a lot more special cases global@Global{..} <- getRO local <- getRW local2 <- captureRAW $ \k -> do count <- atomicModifyIORef todo $ \(count, bs) -> ((count+1, (b,k):bs), count+1) -- only trigger on the edge so we don't have lots of waiting pool entries (if count == mx then addPoolResume else if count == 1 then addPoolBatch else none) globalPool $ go global (localClearMutable local) todo modifyRW $ \root -> localMergeMutable root [local2] where none _ _ = return () go global@Global{..} local todo = do (now, count) <- atomicModifyIORef todo $ \(count, bs) -> if count <= mx then ((0, []), (bs, 0)) else let (xs,ys) = splitAt mx bs in ((count - mx, ys), (xs, count - mx)) (if count >= mx then addPoolResume else if count > 0 then addPoolBatch else none) globalPool $ go global local todo unless (null now) $ runAction global local (do many $ map fst now; Action getRW) $ \x -> forM_ now $ \(_,k) -> (if isLeft x then addPoolException else addPoolResume) globalPool $ k x