
simgi - A Stochastic Gillespie Simulator for Molecular Systems

Author: Markus Dittrich
email: haskelladdict at users dot sourceforge dot net
Version: 0.1.1 (06/02/2009)

Contents

1) Introduction

2) Status

3) Download

4) Compilation

5) Simgi Model Generation Language (SGL)

6) Example Input Files

7) Bugs

8) References

Introduction

simgi is a fairly simple and straightforward stochastic simulator based on Gillspie’s1 direct method.
simgi is implemented in pure Haskell, command line driven and comes with a flexible simulation
description language called Simgi Model Generation Language (SGL). More information is available
from the project summary page.

Status

The 0.1 release of simgi provides a fully functional simulator but should still be treated as an alpha
version since several parts of the code are currently not fully optimal. This is particularly true for
the random number generator which presently leverages the StdGen instance of RandomGen2 and is
probably not sufficient for large simulations in terms of random number quality. Later revisions of simgi
will have a more sophisticated random number generator. Nevertheless, for small systems (such as the
examples in the Models/ directory) the current implementation should be sufficient.

Download

The current release of simgi can be downloaded here.

1

http://sourceforge.net/projects/simgi
http://sourceforge.net/project/platformdownload.php?group_id=260550

Compilation

Compilaton of simgi requires

• >=ghc-6.10

• >=gmp-4.3

To compile the documentation (not required), you will also need

• >=docutils-0.5

• latex, e.g., tetex or texlive

Building of simgi can be done either via

• the standard make, make check, make install

• or via cabal

Simgi Model Generation Language (SGL)

simgi simulations are described via Simgi Model Generation Language (SGL). The corresponding sim-
ulation files typically have an .sgl extension, but this is not enforced by the simgi simulation engine.
A SGL file consists of zero or more descriptor blocks of the form

def <block name>

<block content>

end

The (but see3) formatting of the input files is very flexible. In particular, neither newlines4 nor extrane-
ous whitespace matter. Hence, the above SDL block could also be written on a single line. However, it
is strongly recommended to stick to a consistent and “visually simple” layout to aid in “comprehending”
the underlying model.
Comments can be added to the SGL file and are parsed according to the Haskell language specs

• simple line comments begin with a -- token and treat everything until the next newline as a
comment, including valid SDL commands. Hence, SDL blocks containing line comments need to
be separated by newlines in order to be parsed correctly.

• block comments begin with a {- token and end with a -} token. Everything within a comment
block is ignored by the parser and block comments can be nested.

Currently, the SDL specs define the following block types with their respective block commands and
block content:
parameter block: <block name> = parameters

The purpose of the parameter block is to describe the global simulation parameters. The
following parameters are currently supported:

time = <double> Maximum simulation time in seconds. Default is 0.0 s.

outputIter = <Integer> Output will be kept in memory and written to the output file
and stdout every outputIter iterations. Larger values should result in faster simulations
but require more system memory. Default is to write output every 10000 iterations.
Note: outputIter only affects how often output is written to the output file, not how
much is being accumulated during a simulation (see outputFreq parameter).

2

http://haskell.org/ghc/
http://gmplib.org/
http://docutils.sourceforge.net/

outputFreq = <Integer> Frequency with which output is generated. Default is 1000.

systemVol = <double> Volume of the simulation system in liters. This is needed to
properly compute the reaction rates in molar units. If rates should rather be interpreted
as reaction propensities (like in1) please set systemVol = nil. Default is a system volume
of 1.0 liter.

outputFile = <quoted string>: Name of the output file. This is the only required pa-
rameter in the parameter section. If not given, the simulation will terminate.

molecule block: <block name> = molecules

This block consist of a list of pairs of the form

<String> <Integer>

giving the name of each molecule and the number of molecules present initially. For example,
the following molecule definition block defines molecules A and B with initial numbers of 100
and 200, respectively

def molecules
A 100
B 200

end

reaction block: <block name> = reactions

This block describes the reactions between molecules defined in the molecule block. Reac-
tions are specified via

reactants -> product { rate expression }

Here, reactants and products are of the form

<Integer> <String> + <Integer> <String> +

In this expression, <String> is the reactant or product name as defined in the molecule
block and <Integer> an optional integer specifying the stoichiometry. If <Integer> is not
explicitly given, it is assumed to be 1.

The reaction rate can either be a fixed value of type <Double> or else an mathematical
expression involving <Double>, molecule names, and the current simulation time. Hence,
simgi rate expressions can be arbitrary complex functions of the instantaneous simulation
time and the instantaneous numbers of any molecule in the model. The parser will interpret
any string in the rate expression as a molecule name in a case sensitive fashion, a mathemat-
ical operator or function (see5 for supported functions), or the special variable TIME which
refers to the current simulation time. Hence, do not use any of the mathematical keywords
as a molecule name; this leads to undefined behavior.

Here is an example reaction block for the two molecules A and B defined above:

define reactions
2A + B -> A { 10.0e-5 }
B -> A { 2.0e-5 * A * exp(-0.5*TIME) }

end

In the first reaction, 2 A molecules react with one B to yield another A at a rate of 10.0e-5
1/(Mol s). The second reaction describes a decay of B back to A at a rate that is computed
based on the instantaneous number of A molecules present and which decays exponentially
with simulation time.

3

Internally, rate expressions are converted into a compute stack in RPN format which is
evaluated at run-time. Even though this procedure is fairly efficient, there is some numerical
overhead incurred at each iteration and the use of complicated rate expressions should
therefore be avoided if possible.

Example Input Files

Below are several example input files detailing the use of SGL:

• Lotka-Volterra Model

• Brusselator Model

• Oregonator Model

These are also available in the Models/ sub-directory in the source tree.

Bugs

Please report all bugs and feature requests to <haskelladdict at users dot sourceforge dot net>.

References

1 Daniel T. Gillespie (1977). “Exact Stochastic Simulation of Coupled Chemical Reactions”. The
Journal of Physical Chemistry 81 (25): 2340-2361
2 http://hackage.haskell.org/packages/archive/random/1.0.0.1/doc/html/System-
Random#globalrng.html
3 Since simgi currently is an alpha version there may be fairly drastic changes to the SDL specs in
future releases until the first beta release.
4 An exception to this rule are line comments starting with -- which ingnore everything until the next
newline.
5 Rate expressions can contain any arithmetic expression involving the standard operators “+”, “-”,
“*”, “/”, “ˆ” (exponentiation), and the mathematical functions sqrt, exp, log, log2, log10, sin,
cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, acosh, atanh, erf,
erfc, abs.

4

file:model_files/volterra.sgl
file:model_files/brusselator.sgl
file:model_files/oregonator.sgl
http://hackage.haskell.org/packages/archive/random/1.0.0.1/doc/html/System-Random#globalrng.html
http://hackage.haskell.org/packages/archive/random/1.0.0.1/doc/html/System-Random#globalrng.html

