simgi - A Stochastic Gillespie Simulator for
Molecular Systems

Author: Markus Dittrich
email: haskelladdict at users dot sourceforge dot net
Version: 0.2 (12/01/2009)

Contents

1) Introduction

2) Status
3) Download

5) Simgi Model Generation Language (SGL)

6

)
)
)

4) Compilation
)
) Example Input Files
)

7) Bugs

Introduction

simgi is a fairly simple and straightforward stochastic simulator based on Gillespie’s*
direct method. simgi is implemented in pure Haskell, command line driven and
comes with a flexible simulation description language called Simgi Model Gener-
ation Language (SGL). simgi uses a fast 64 bit implementation of the Mersenne
Twister algorithm as random number source.

Status

The 0.2 release of simgi provides a fully functional simulator which has been
tested on several model systems some of which were fairly large.

Download

The current release of simgi can be downloaded here.

http://sourceforge.net/project/platformdownload.php?group_id=260550

Compilation
Compilaton of simgi requires
e >=ghc-6.10
e >—gmp-4.3
e >—mersenne-random-pure64
To compile the documentation (not required), you will also need
e >—docutils-0.5
e latex, e.g., tetex or texlive
Building of simgi can be done either via
e the standard make, make check, make install

e or via cabal

Simgi Model Generation Language (SGL)

simgi simulations are described via Simgi Model Generation Language (SGL).
The corresponding simulation input files typically have an .sgl extension, but
this is not enforced by the simgi simulation engine.

A SGL file consists of zero or more descriptor blocks of the form

def <block name>
<block content>

end

The formatting of the input files is very flexible. In particular, neither newlines?
nor extraneous whitespace matter. Hence, the above SGL block could have also
been written on a single line. However, it is strongly recommended to stick to a
consistent and “visually simple” layout to aid in “comprehending” the underlying
model. Also, it is important to point out that simgi’s parser is case sensitive.
Comments can be added to the SGL file and are parsed according to the
Haskell language specs

e simple line comments begin with a -- token and treat everything until
the next newline as a comment, including valid SGL commands. Hence,
SGL blocks containing line comments need to be separated by newlines in
order to be parsed correctly.

e block comments begin with a {- token and end with a -} token. Every-
thing within a comment block is ignored by the parser and block comments
can be nested.

http://haskell.org/ghc/
http://gmplib.org/
http://hackage.haskell.org/package/mersenne-random-pure64
http://docutils.sourceforge.net/

Expression Statements are an important and useful part of SGL. Expression
statements are enclosed in curly braces and can contain any mathematical ex-
pression involving doubles, the simulation time (via the keyword TIME), as well
as the values of any variable or molecule count. The values of time, molecule
counts and variables are evaluated at run time and represent the instanta-
neous values at the time at which the expression is evaluated. Expressions
statements can contain any arithmetic expression involving the standard op-
erators “+7, “7 R« (exponentiation), and the mathematical func-
tions sqrt, exp, log, log2, loglO, sin, cos, tan, asin, acos, atan,
sinh, cosh, tanh, asinh, acosh, atanh, acosh, atanh, erf, erfc, abs.
Internally, expression statements are converted into a compute stack in RPN
format which is evaluated at run-time. Even though this procedure is fairly
efficient, there is some numerical overhead incurred at each iteration and the
use of complicated rate expressions should therefore be avoided if possible.
Below is a list of all SGL blocks available for describing simulations. Presently,
the order of blocks matters and should be exactly the same in which they are
described below. Several SGL blocks are optional and are marked as such below.
Currently, the SGL specs define the following block types with their respective
block commands and block content:

parameter block: <block name> = parameters

The purpose of the parameter block is to describe the global simula-
tion parameters. The following parameters are currently supported:

time = Double Maximum simulation time in seconds. Default is

0.0 s.

outputBuffer = Integer Output will be kept in memory and writ-
ten to the output file and stdout every outputBuffer iterations.
Larger values should result in faster simulations but require
more system memory. Default is to write output every 10000
iterations.
Note: outputBuffer only affects how often output is written
to the output file, not how much output is actually generated
during a simulation (see outputFreq parameter).

outputFreq = Integer Iteration frequency with which output is
generated. Default is every 1000 iterations. Please note that
output is written to the output file in batches of outputBuffer.

system Vol = Double Volume of the simulation system in liters.
This is needed to properly compute the reaction rates in molar
units. If rates should rather be interpreted as reaction propen-
sities (like in') please set system Vol = nil. Default is a system
volume of 1.0 liter.

outputFile = Quoted String Name of the output file. This is the
only required parameter in the parameter section. If not given,
the simulation will terminate.

variable block: <block name> — wvariables

This block consist of a list of pairs of the form

String = <variable expression>

where String is the variable name, and <variable expression>
is either a Double or an expression statement as defined above.
Variables can be used in any other expression statement in the
SGL file including reaction rate definitions. Please make sure to not
define a variable in terms of itself to avoid infinite recursion.

molecule block: <block name> = molecules
This block consist of a list of pairs of the form
String = Integer

giving the name of each molecule and the number of molecules
present initially. For example, the following molecule definition block
defines molecules A and B with initial numbers of 100 and 200, re-

spectively
def molecules
A = 100
B = 200
end

NOTE: Please do not use any of the predefined mathematical func-
tions or defined variables (including TIME) as molecule names since
this will lead to undefined behavior.

reaction block: <block name> — reactions

This block describes the reactions between molecules defined in the
molecule block. Reactions are specified via

<reactants> -> <products> | <rate expression> |
Here, <reactants> and <products> are of the form
Integer String + Integer String +

In this expression, String is a molecule name as defined in the
molecule block and Integer an optional integer specifying the sto-
ichiometry. If Integer is not explicitly given, it is assumed to be
1.

The <rate expression> can either be a fixed value of type Double
or an expression statement as defined above.

Below is an example reaction block for the two molecules A and B
defined above:

define reactiomns

20+ B > A | 10.0e-5 |

B -> A | {2.0e-5 x A x exp(-0.5*%TIME) } |
end

In the first reaction, 2 A molecules react with one B to yield another
A at a rate of 10.0e-5. The second reaction describes a decay of B
back to A at a rate that is computed based on the instantaneous
number of A molecules present and which decays exponentially with
simulation time.

event block: <block name> — events

An event block allows one to specify events which will occur during
the simulation. Each event consists of a <trigger expression> and
an associated set of <action expressions>. Events are specified
via

{ <trigger expression> } => { <action expression> }
Here, trigger expression is of the form

<trigger primitive> [<boolean operator> <trigger primitive>]
with <trigger primitive> defined by

<expression statement> relational operator <expression statement>

Each <trigger primitive> contains two expression statements
as defined above and a relational operator which can be any of
>= <= == > and <. Hence, each <trigger primitive> evaluates
to either true or false.

Several <trigger primitives> can be chained together via the
<boolean operators> && and || to yield a final boolean value of
true or false.

If the <trigger expression> evaluates to true during an iteration,
the associated <action expressions> is executed during the same
timestep.

<action expression> consists of a semi-colon separated list of as-
signments
String = <assignment expression> [; String = <assignment expression>]
where String is a molecule or variable name and <expression>
either a Double or an expression statement.

NOTE: Since molecule counts are integer values assignments to
molecule counts in <action expression> will be converted to an
integer value via floor.

output block: <block name> = output

This block consists of a simple list of variable and molecule names
that will be streamed to the output file in the same order:

[namel, name2, name3,]

Example Input Files

Below are several example input files detailing the use of SGL:
e Lotka-Volterra Model
e Brusselator Model
e Oregonator Model

These are also available in the Models/ sub-directory in the source tree.

Bugs

Please report all bugs and feature requests to <haskelladdict at users dot source-
forge dot net>.

IDaniel T. Gillespie (1977). “Exact Stochastic Simulation of Coupled Chemical Reactions”.
The Journal of Physical Chemistry 81 (25): 2340-2361

2An exception to this rule are line comments starting with -- which ingnore everything
until the next newline.

file:model_files/volterra.sgl
file:model_files/brusselator.sgl
file:model_files/oregonator.sgl

