module Data.Singletons.Names where
import Data.Singletons
import Data.Singletons.SuppressUnusedWarnings
import Data.Singletons.Decide
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Desugar
import GHC.TypeLits ( Nat, Symbol )
import GHC.Exts ( Any )
import Data.Typeable ( TypeRep )
import Data.Singletons.Util
import Data.Proxy ( Proxy(..) )
import Control.Monad
anyTypeName, boolName, andName, tyEqName, compareName, minBoundName,
maxBoundName, repName,
nilName, consName, listName, tyFunName,
applyName, natName, symbolName, undefinedName, typeRepName, stringName,
eqName, ordName, boundedName, orderingName,
singFamilyName, singIName, singMethName, demoteRepName,
singKindClassName, sEqClassName, sEqMethName, sconsName, snilName,
sIfName, kProxyDataName, kProxyTypeName, proxyTypeName, proxyDataName,
someSingTypeName, someSingDataName,
sListName, sDecideClassName, sDecideMethName,
provedName, disprovedName, reflName, toSingName, fromSingName,
equalityName, applySingName, suppressClassName, suppressMethodName,
thenCmpName,
kindOfName, tyFromIntegerName, tyNegateName, sFromIntegerName,
sNegateName, errorName, foldlName, cmpEQName, cmpLTName, cmpGTName,
singletonsToEnumName, singletonsFromEnumName, enumName, singletonsEnumName,
equalsName :: Name
anyTypeName = ''Any
boolName = ''Bool
andName = '(&&)
compareName = 'compare
minBoundName = 'minBound
maxBoundName = 'maxBound
tyEqName = mk_name_tc "Data.Singletons.Prelude.Eq" ":=="
repName = mkName "Rep"
nilName = '[]
consName = '(:)
listName = ''[]
tyFunName = ''TyFun
applyName = ''Apply
symbolName = ''Symbol
natName = ''Nat
undefinedName = 'undefined
typeRepName = ''TypeRep
stringName = ''String
eqName = ''Eq
ordName = ''Ord
boundedName = ''Bounded
orderingName = ''Ordering
singFamilyName = ''Sing
singIName = ''SingI
singMethName = 'sing
toSingName = 'toSing
fromSingName = 'fromSing
demoteRepName = ''DemoteRep
singKindClassName = ''SingKind
sEqClassName = mk_name_tc "Data.Singletons.Prelude.Eq" "SEq"
sEqMethName = mk_name_v "Data.Singletons.Prelude.Eq" "%:=="
sIfName = mk_name_v "Data.Singletons.Prelude.Bool" "sIf"
sconsName = mk_name_d "Data.Singletons.Prelude.Instances" "SCons"
snilName = mk_name_d "Data.Singletons.Prelude.Instances" "SNil"
kProxyDataName = 'KProxy
kProxyTypeName = ''KProxy
someSingTypeName = ''SomeSing
someSingDataName = 'SomeSing
proxyTypeName = ''Proxy
proxyDataName = 'Proxy
sListName = mk_name_tc "Data.Singletons.Prelude.Instances" "SList"
sDecideClassName = ''SDecide
sDecideMethName = '(%~)
provedName = 'Proved
disprovedName = 'Disproved
reflName = 'Refl
equalityName = ''(~)
applySingName = 'applySing
suppressClassName = ''SuppressUnusedWarnings
suppressMethodName = 'suppressUnusedWarnings
thenCmpName = mk_name_v "Data.Singletons.Prelude.Ord" "thenCmp"
kindOfName = ''KindOf
tyFromIntegerName = mk_name_tc "Data.Singletons.Prelude.Num" "FromInteger"
tyNegateName = mk_name_tc "Data.Singletons.Prelude.Num" "Negate"
sFromIntegerName = mk_name_v "Data.Singletons.Prelude.Num" "sFromInteger"
sNegateName = mk_name_v "Data.Singletons.Prelude.Num" "sNegate"
errorName = 'error
foldlName = 'foldl
cmpEQName = 'EQ
cmpLTName = 'LT
cmpGTName = 'GT
singletonsToEnumName = mk_name_v "Data.Singletons.Prelude.Enum" "toEnum"
singletonsFromEnumName = mk_name_v "Data.Singletons.Prelude.Enum" "fromEnum"
enumName = ''Enum
singletonsEnumName = mk_name_tc "Data.Singletons.Prelude.Enum" "Enum"
equalsName = '(==)
singPkg :: String
singPkg = $( (LitE . StringL . loc_package) `liftM` location )
mk_name_tc :: String -> String -> Name
mk_name_tc = mkNameG_tc singPkg
mk_name_d :: String -> String -> Name
mk_name_d = mkNameG_d singPkg
mk_name_v :: String -> String -> Name
mk_name_v = mkNameG_v singPkg
mkTupleTypeName :: Int -> Name
mkTupleTypeName n = mk_name_tc "Data.Singletons.Prelude.Instances" $
"STuple" ++ (show n)
mkTupleDataName :: Int -> Name
mkTupleDataName n = mk_name_d "Data.Singletons.Prelude.Instances" $
"STuple" ++ (show n)
promoteValNameLhs :: Name -> Name
promoteValNameLhs = upcase
promoteValNameLhsPrefix :: (String, String) -> Name -> Name
promoteValNameLhsPrefix pres n = mkName $ toUpcaseStr pres n
promoteValRhs :: Name -> DType
promoteValRhs name
| name == nilName
= DConT nilName
| otherwise
= DConT $ promoteTySym name 0
promoteTySym :: Name -> Int -> Name
promoteTySym name sat
| name == undefinedName
= anyTypeName
| name == nilName
= mkName $ "NilSym" ++ (show sat)
| Just degree <- tupleNameDegree_maybe name `mplus`
unboxedTupleNameDegree_maybe name
= mk_name_tc "Data.Singletons.Prelude.Instances" $
"Tuple" ++ show degree ++ "Sym" ++ (show sat)
| otherwise
= let capped = toUpcaseStr noPrefix name in
if isHsLetter (head capped)
then mkName (capped ++ "Sym" ++ (show sat))
else mkName (capped ++ (replicate (sat + 1) '$'))
promoteClassName :: Name -> Name
promoteClassName = prefixUCName "P" "#"
classTvsName :: Name -> Name
classTvsName = suffixName "TyVars" "^^^"
mkTyName :: Quasi q => Name -> q Name
mkTyName tmName = do
let nameStr = nameBase tmName
symbolic = not (isHsLetter (head nameStr))
qNewName (if symbolic then "ty" else nameStr)
falseTySym :: DType
falseTySym = promoteValRhs falseName
trueTySym :: DType
trueTySym = promoteValRhs trueName
boolKi :: DKind
boolKi = DConT boolName
andTySym :: DType
andTySym = promoteValRhs andName
singDataConName :: Name -> Name
singDataConName nm
| nm == nilName = snilName
| nm == consName = sconsName
| Just degree <- tupleNameDegree_maybe nm = mkTupleDataName degree
| Just degree <- unboxedTupleNameDegree_maybe nm = mkTupleDataName degree
| otherwise = prefixUCName "S" ":%" nm
singTyConName :: Name -> Name
singTyConName name
| name == listName = sListName
| Just degree <- tupleNameDegree_maybe name = mkTupleTypeName degree
| Just degree <- unboxedTupleNameDegree_maybe name = mkTupleTypeName degree
| otherwise = prefixUCName "S" ":%" name
singClassName :: Name -> Name
singClassName = singTyConName
singValName :: Name -> Name
singValName n
| n == undefinedName = undefinedName
| head (nameBase n) == '_' = (prefixLCName "_s" "%") $ n
| otherwise = (prefixLCName "s" "%") $ upcase n
kindParam :: DKind -> DType
kindParam k = DSigT (DConT kProxyDataName) (DConT kProxyTypeName `DAppT` k)
proxyFor :: DType -> DExp
proxyFor ty = DSigE (DConE proxyDataName) (DAppT (DConT proxyTypeName) ty)
singFamily :: DType
singFamily = DConT singFamilyName
singKindConstraint :: DKind -> DPred
singKindConstraint k = DAppPr (DConPr singKindClassName) (kindParam k)
demote :: DType
demote = DConT demoteRepName
apply :: DType -> DType -> DType
apply t1 t2 = DAppT (DAppT (DConT applyName) t1) t2
mkListE :: [DExp] -> DExp
mkListE =
foldr (\h t -> DConE consName `DAppE` h `DAppE` t) (DConE nilName)
foldApply :: DType -> [DType] -> DType
foldApply = foldl apply
mkEqPred :: DType -> DType -> DPred
mkEqPred ty1 ty2 = foldl DAppPr (DConPr equalityName) [ty1, ty2]
mkKProxies :: Quasi q
=> [Name]
-> q ([DTyVarBndr], DCxt)
mkKProxies ns = do
kproxies <- mapM (const $ qNewName "kproxy") ns
return ( zipWith (\kp kv -> DKindedTV kp (DConT kProxyTypeName `DAppT` DVarT kv))
kproxies ns
, map (\kp -> mkEqPred (DVarT kp) (DConT kProxyDataName)) kproxies )