#8             ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i jklmnopqrst u vwxyz{|}~        !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                      !"#$ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9:;<=>?@AB C D EFGHIJKLMNO P Q R S T U V W X YZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~         !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                            ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                                                                                       ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { |! }! ~! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! "! #! $! %! &! '! (! )! *! +! ,! -! .! /! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! :! ;! <! =! >! ?! @! A! B! C! D! E! F! G! H! I! J! K! L! M! N! O! P! Q! R! S! T! U! V! W! X! Y! Z! [! \! ]! ^! _! `! a! b! c! d! e! f! g! h! i! j! k! l! m! n! o! p! q! r! s! t! u! v! w! x! y! z! {! |! }! ~! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !                                                                                     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~################                         !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                           $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%E&(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone%&',-.=>?FHSUVXgk_$- singletons Similar to .*, but for two-parameter type constructors.. singletons:Wrapper for converting the normal type-level arrow into a 2. For example, given: data Nat = Zero | Succ Nat type family Map (a :: a ~> b) (a :: [a]) :: [b] Map f '[] = '[] Map f (x ': xs) = Apply f x ': Map f xs We can write: #Map (TyCon1 Succ) [Zero, Succ Zero] singletonsNAn "internal" defunctionalization symbol used primarily in the definition of . singletonsNAn "internal" defunctionalization symbol used primarily in the definition of , as well as the C instances for ., -, etc./ singletonsWorkhorse for the .A, etc., types. This can be used directly in place of any of the TyConN$ types, but it will work only with  monomorphicB types. When GHC#14645 is fixed, this should fully supersede the TyConN types.0 singletonsAn infix synonym for 11 singletonsType level function application2 singletonspSomething of kind `a ~> b` is a defunctionalized type function that is not necessarily generative or injective.3 singletonsRepresentation of the kind of a type-level function. The difference between term-level arrows and this type-level arrow is that at the term level applications can be unsaturated, whereas at the type level all applications have to be fully saturated.4 singletonsA 4 wraps up a C instance for explicit handling.7 singletonsThe singleton for :@s. Informally, this is the singleton type for other singletons.: singletonsA newtype around E.Since Ev is a type family, it cannot be used directly in type class instances. As one example, one cannot write a catch-all  instance SDecide k =>  TestEquality (E k). On the other hand, :Y is a perfectly ordinary data type, which means that it is quite possible to define an  instance SDecide k =>  TestEquality (: k).= singletonsAn existentially-quantified singleton. This type is useful when you want a singleton type, but there is no way of knowing, at compile-time, what the type index will be. To make use of this type, you will generally have to use a pattern-match: ofoo :: Bool -> ... foo b = case toSing b of SomeSing sb -> {- fancy dependently-typed code with sb -};An example like the one above may be easier to write using d.? singletonsThe ? class is a kind class. It classifies all kinds for which singletons are defined. The class supports converting between a singleton type and the base (unrefined) type which it is built from.For a ?@ instance to be well behaved, it should obey the following laws: B . A "a = (\x -> d x A) "a  4The final law can also be expressed in terms of the O pattern synonym: (\(O sing) -> O sing) "a  @ singletons6Get a base type from the promoted kind. For example,  Demote Bool will be the type Bool8. Rarely, the type and kind do not match. For example,  Demote Nat is Natural.A singletons-Convert a singleton to its unrefined version.B singletonsHConvert an unrefined type to an existentially-quantified singleton type.C singletonsA C constraint is essentially an implicitly-passed singleton. If you need to satisfy this constraint with an explicit singleton, please see c or the E pattern synonym.D singletons;Produce the singleton explicitly. You will likely need the ScopedTypeVariables0 extension to use this method the way you want.E singletons'The singleton kind-indexed type family.F singletons Force GHC to unify the kinds of a and b . Note that  SameKind a b is different from KindOf a ~ KindOf b in that the former makes the kinds unify immediately, whereas the latter is a proposition that GHC considers as possibly false.G singletons=Convenient synonym to refer to the kind of a type variable: type KindOf (a :: k) = kO singletonsnAn explicitly bidirectional pattern synonym for going between a singleton and the corresponding demoted term.As an  expression5: this takes a singleton to its demoted (base) type.:t FromSing \@Bool!FromSing \@Bool :: Sing a -> BoolFromSing SFalseFalseAs a pattern8: It extracts a singleton from its demoted (base) type.  singAnd ::  ->  -> =  singAnd (O singBool1) (O singBool2) = = (singBool1 %&& singBool2) instead of writing it with d: singAnd bool1 bool2 = d bool1 $ singBool1 -> d bool2 $ singBool2 -> = (singBool1 %&& singBool2) P singletonsDAn explicitly bidirectional pattern synonym for implicit singletons.As an  expression: Constructs a singleton Sing a( given a implicit singleton constraint SingI a.As a pattern: Matches on an explicit Sing a witness bringing an implicit SingI a constraint into scope.Q singletonsGet an implicit singleton (a C instance) from an explicit one.R singletonsAn infix synonym for &S singletonsUse this function when passing a function on singletons as a higher-order function. You will need visible type application to get this to work. For example: Wfalses = sMap (singFun1 @NotSym0 sNot) (STrue `SCons` STrue `SCons` SNil)There are a family of  singFun...? functions, keyed by the number of parameters of the function.[ singletonsThis is the inverse of S, and likewise for the other  unSingFun... functions.c singletonsRConvenience function for creating a context with an implicit singleton available.d singletons Convert a normal datatype (like D) to a singleton for that datatype, passing it into a continuation.e singletonsyA convenience function useful when we need to name a singleton value multiple times. Without this function, each use of Dd could potentially refer to a different singleton, and one has to use type signatures (often with ScopedTypeVariables#) to ensure that they are the same.f singletonsA convenience function that names a singleton satisfying a certain property. If the singleton does not satisfy the property, then the function returns X. The property is expressed in terms of the underlying representation of the singleton.g singletons7Allows creation of a singleton when a proxy is at hand.h singletons&Allows creation of a singleton when a proxy# is at hand.i singletonsvA convenience function that takes a type as input and demotes it to its value-level counterpart as output. This uses ? and C behind the scenes, so i = A D.*This function is intended to be used with TypeApplications. For example: demote @TrueTrue#demote @(Nothing :: Maybe Ordering)Nothing singletonsNote that this instance's B7 implementation crucially relies on the fact that the ? instances for k1 and k2 both satisfy the ? laws. If they don't, B might produce strange results!d singletonsThe original datatype singletonsFunction expecting a singleton] !"#$%&'()*+,-./0123456789:;<=>?@AB@CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi09 20R9 (C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.>HSUVXkoj singletonsMembers of the j "kind" class support decidable equality. Instances of this class are generated alongside singleton definitions for datatypes that derive an  instance.k singletons>Compute a proof or disproof of equality, given two singletons.l singletonsA l about a type a0 is either a proof of existence or a proof that a cannot exist.m singletons Witness for an singletonsProof that no a existso singletons,Because we can never create a value of type ", a function that type-checks at  a -> Void shows that objects of type a% can never exist. Thus, we say that a is op singletons&A suitable default implementation for  that leverages j.q singletons&A suitable default implementation for  that leverages j. jklmnopq jkolmnpqk4 Safe-Hst singletonsThis class (which users should never see) is to be instantiated in order to use an otherwise-unused data constructor, such as the "kind-inference" data constructor for defunctionalization symbols.tutu'None ,-.2=?HVs\      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKL(None =?@AFMSX_M singletonsGenerate a new UniqueN singletonsMis a valid Haskell infix data constructor (i.e., does it begin with a colon?)O singletonsIs an identifier a legal data constructor name in Haskell? That is, is its first character an uppercase letter (prefix) or a colon (infix)?P singletonsIs an identifier uppercase?"Note that this will always return Q for infix names, since the concept of upper- and lower-case doesn't make sense for non-alphabetic characters. If you want to check if a name is legal as a data constructor, use the O function.R singletonsTNon capture-avoiding substitution. (If you want capture-avoiding substitution, use substTy from !Language.Haskell.TH.Desugar.Subst.S singletonsCall T first to ensure we have a U# in the type namespace, then call V.CWXYZ[\]^_`MabcdefNOPghijklmnopqrstuvRwxyz{|}~S)None singletonsIf a . begins with one or more underscores, return  (us, rest), where us9 contain all of the underscores at the beginning of the  and rest contains the remainder of the . Otherwise, return .     *None+None2,None>HMVG !"#$%&'(-NoneJM4  )*+,-./012.None345/None60None)789:;<=>?@ABCD1(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneE2NoneJP_ FG3(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneXH singletonsDoes not contain variableI singletonsThe variable itselfJ singletons(Type app, variable only in last argumentK singletons.Type app, variable other than in last argumentL singletons Forall typeM singletonsIs this data type a non-vanilla data type? Here, "non-vanilla" refers to any data type that cannot be expressed using Haskell98 syntax. For instance, this GADT: ?data Foo :: Type -> Type where MkFoo :: forall a. a -> Foo a *Is equivalent to this Haskell98 data type: data Foo a = MkFoo a +However, the following GADT is non-vanilla: 9data Bar :: Type -> Type where MkBar :: Int -> Bar Int USince there is no equivalent Haskell98 data type. The closest you could get is this: $data Bar a = (a ~ Int) => MkBar Int ,Which requires language extensions to write.HA data type is a non-vanilla if one of the following conditions are met: >A constructor has any existentially quantified type variables.A constructor has a context.AWe care about this because some derivable stock classes, such as N7, forbid derived instances for non-vanilla data types.O singletonsVariable to look for singletons How to fold singletonsType to processPQLKJIHRMOSTUVWXYZ[4(C) 2015 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneX\]5None^ singletonsThe original2 constructors (for inferring the instance context) singletonsThe  singletons constructors_ singletonsThe name of the data type singletonsThe original2 constructors (for inferring the instance context) `abcde^_fghi6(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneX0j7(C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneXk singletonsIs a lX instance being generated to be promoted/singled, or is it being generated to create a l instance for a singleton type?m singletonsFor promotion/singlingn singletonsFor a l instance. Bundles the U of the data type.o singletonsqParenthesize an infix constructor name if it is being applied as a prefix function (e.g., data Amp a = (:&) a a)p singletonsTurn a context like (l a, l b) into (ShowSing a, ShowSing b). This is necessary for l instances for singleton types.kmnqp8(C) 2015 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNoner singletons#Make a *non-singleton* Ord instancer9(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneXs:(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneXtuvwx;(C) 2015 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNoney<(C) 2015 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone*z=(C) 2015 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNonePXw{ singletons Split up a [DDec] into its pieces, extracting |! instances from deriving clauses} singletons"The deriving strategy, if present. singletonsThe class being derived (e.g., :), possibly applied to some number of arguments (e.g.,  C Int Bool). singletons ctx if ctx was provided via StandaloneDeriving.  if using a deriving clause. singletons$The data type argument to the class. singletons<The original data type information (e.g., its constructors).~{}>NoneP_`Y v singletonsoGenerate promoted definitions from a type that is already defined. This is generally only useful with classes.w singletonsKPromote every declaration given to the type level, retaining the originals.x singletonsPromote each declaration, discarding the originals. Note that a promoted datatype uses the same definition as an original datatype, so this will not work with datatypes. Classes, instances, and functions are all fine.z singletonsProduce instances for (==)+ (type-level equality) from the given types{ singletonsProduce instances for POrd from the given types| singletonsProduce an instance for POrd from the given type} singletonsProduce instances for PBounded from the given types~ singletonsProduce an instance for PBounded from the given type singletonsProduce instances for PEnum from the given types singletonsProduce an instance for PEnum from the given type singletonsProduce instances for PShow from the given types singletonsProduce an instance for PShow from the given type singletonsProduce an instance for (==)* (type-level equality) from the given type singletonseinstantiations for class tyvars (Nothing for default decls) See Note [Promoted class method kinds]!vwxyz{|}~?NoneJP" singletonstGenerate singleton definitions from a type that is already defined. For example, the singletons package itself uses 2$(genSingletons [''Bool, ''Maybe, ''Either, ''[]]))to generate singletons for Prelude types. singletonskMake promoted and singleton versions of all declarations given, retaining the original declarations. See  >https://github.com/goldfirere/singletons/blob/master/README.md for further explanation. singletonsMake promoted and singleton versions of all declarations given, discarding the original declarations. Note that a singleton based on a datatype needs the original datatype, so this will fail if it sees any datatype declarations. Classes, instances, and functions are all fine. singletonsCreate instances of SEq and type-level (==) for each type in the list singletonsCreate instance of SEq and type-level (==) for the given type singletonsCreate instances of SEq (only -- no instance for (==), which SEq0 generally relies on) for each type in the list singletonsCreate instances of SEq (only -- no instance for (==), which SEq) generally relies on) for the given type singletonsCreate instances of SDecide, b, and a for each type in the list. singletonsCreate instance of SDecide, b, and a for the given type. singletonsCreate instances of SOrd for the given types singletonsCreate instance of SOrd for the given type singletonsCreate instances of SBounded for the given types singletonsCreate instance of SBounded for the given type singletonsCreate instances of SEnum for the given types singletonsCreate instance of SEnum for the given type singletonsCreate instance of SShow for the given type(Not to be confused with showShowInstance.) singletonsCreate instances of SShow for the given types(Not to be confused with .) singletonsCreate instance of l for the given singleton type(Not to be confused with .) singletonsCreate instances of l for the given singleton types(Not to be confused with .) singletonsCreate an instance for SingI TyCon{N}, where N1 is the positive number provided as an argument.5Note that the generated code requires the use of the QuantifiedConstraints language extension. singletonsCreate an instance for SingI TyCon{N}, where N1 is the positive number provided as an argument.5Note that the generated code requires the use of the QuantifiedConstraints language extension. singletonsIf given a non-empty list of Bp, construct a case expression that brings singleton equality constraints into scope via pattern-matching. See "Note [Singling pattern signatures]. singletonsthe result kind, if known+@None&'-.=>?HSUVXfkE (C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HVXfkKEE(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HSVXk zHE     HE     -(C) 2013-2014 Richard Eisenberg, Jan StolarekBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.2HUVXke3 singletonsConjunction of singletons7 singletonsDisjunction of singletons? singletonsNegation of a singletonF singletonsConditional over singletons E$%&'()01234567<=>?DEF EF?37 $)02DE456<=>%&'(1334572<=(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.8>HSUVXk!I singletons|A sensible way to compute Boolean equality for types of any kind. Note that this definition is slightly different from the AB type family from Data.Type.Equality in base, as AB\ attempts to distinguish applications of type constructors from other types. As a result, a == a does not reduce to  for every a, but I a a does reduce to  for every a-. The latter behavior is more desirable for  singletons$' purposes, so we use it instead of AB.J singletonsThe promoted analogue of ". If you supply no definition for K , then it defaults to a use of I.M singletonsThe singleton analogue of . Unlike the definition for 3, it is required that instances define a body for N!. You may also supply a body for O.N singletonsBoolean equality on singletonsO singletons!Boolean disequality on singletonsIJKLMNOPQRSTUVWXJKLMNOIVWXSTUPQRK4L4N4O4STVW(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-=?FHSUVXk0l singletons A variant of  whose underlying  is restricted to kind  rep (for some  rep). singletons#A choice of singleton for the kind  rep (for some  rep0), an instantiation of which is the famous kind .BConceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other E instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than s (for instance, Ms are more difficult to pattern match on, and require extra runtime checks).>We cannot produce explicit singleton values for everything in  rep6, however, since it is an open kind, so we reach for  in this one particular case.EE(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=>?HUVXk2= E   =  E  4444C(C) 2014 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&',-.=>?HSUVXkK~ L singletonsThe promotion of 3. This version is more poly-kinded for easier use.Q singletonsGiven a singleton for Nat, call something requiring a KnownNat instance.R singletonsGiven a singleton for Symbol, call something requiring a  KnownSymbol instance.S singletonsThe promotion of 3. This version is more poly-kinded for easier use.V singletonsThe singleton for W singletonsThe promotion of .Z singletonsThe singleton for .\ singletonsThe singleton for .] singletonsThe singleton analogue of  for s.a singletonsThe singleton analogue of 2Note that, because of historical reasons in GHC's  API, * is incompatible (unification-wise) with  and the J, M, , and  instances for . (a  b) ~ 'True does not imply anything about a  b or any other J /  relationships.(Be aware that " in the paragraph above refers to  from the  typeclass, exported from Data.Singletons.Prelude.Ord, and not the  from  GHC.TypeNats*. The latter is simply a type alias for (a  b) ~ 'True.)pThis is provided here for the sake of completeness and for compatibility with libraries with APIs built around . New code should use +, exposed through this library through the  and  instances for ."ELMNOPQRSTUVWXYZ[\]^_`abcd]8^_a4bc(C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.=>?HSXfqe singletonsThe workhorse that powers f. The only reason that fo` exists is to work around GHC's inability to put type families in the head of a quantified constraint (see  /https://gitlab.haskell.org/ghc/ghc/issues/14860this GHC issueP for more details on this point). In other words, GHC will not let you define f like so: class (forall (z :: k). l (E z)) => f k  By replacing l (E z) with  ShowSing' zb, we are able to avoid this restriction for the most part. There is one major downside to using  ShowSing', however: deriving ld instances for singleton types does not work out of the box. In other words, if you try to do this: deriving instance f k => l ( (z :: [k])) AThen GHC will complain to the effect that it could not deduce a l (E x) constraint. This is due to  /https://gitlab.haskell.org/ghc/ghc/issues/16365another unfortunate GHC bug( that prevents GHC from realizing that f k implies l (E (x :: k))\. The workaround is to force GHC to come to its senses by using an explicit type signature:  instance f k => l (! (z :: [k])) where showsPrec p $ = showString "SNil" showsPrec p ( (sx :: E x) (sxs :: E xs)) = (showParen (p > 10) $ showString "SCons " . showsPrec 11 sx . showSpace . showsPrec 11 sxs) :: (ShowSing' x, ShowSing' xs) => ShowS  The use of  ShowSing' xX in the signature is sufficient to make the constraint solver connect the dots between f k and l (E (x :: k)). (The  ShowSing' xsb constraint is not strictly necessary, but it is shown here since that is in fact the code that  singletons" will generate for this instance.)Because  deriving lQ will not insert these explicit signatures for us, it is not possible to derive l- instances for singleton types. Thankfully,  singletons' Template Haskell machinery can do this manual gruntwork for us 99% of the time, but if you ever find yourself in a situation where you must define a lK instance for a singleton type by hand, this is important to keep in mind.cNote that there is one potential future direction that might alleviate this pain. We could define f` like this instead: class (forall sing. sing ~ E => l# (sing z)) => ShowSing' z instance l (E z) => ShowSing' z -For many examples, this lets you just derive lR instances for singleton types like you would expect. Alas, this topples over on Bar in the following example: newtype Foo a = MkFoo a data SFoo :: forall a. Foo a -> Type where SMkFoo :: Sing x -> SFoo (MkFoo x) type instance Sing = SFoo deriving instance ShowSing a => Show (SFoo (z :: Foo a)) newtype Bar a = MkBar (Foo a) data SBar :: forall a. Bar a -> Type where SMkBar :: Sing x -> SBar (MkBar x) type instance Sing = SBar deriving instance ShowSing (Foo a) => Show (SBar (z :: Bar a)) &This fails because of you guessed it  /https://gitlab.haskell.org/ghc/ghc/issues/16502another GHC bugH. Bummer. Unless that bug were to be fixed, the current definition of f` is the best that we can do.f singletons8In addition to the promoted and singled versions of the l class that  singletons< provides, it is also useful to be able to directly define lf instances for singleton types themselves. Doing so is almost entirely straightforward, as a derived l instance does 90 percent of the work. The last 10 percent getting the right instance context is a bit tricky, and that's where f comes into play.sAs an example, let's consider the singleton type for lists. We want to write an instance with the following shape: instance ??? => l (! (z :: [k])) where showsPrec p $ = showString "SNil" showsPrec p ( sx sxs) = showParen (p > 10) $ showString "SCons " . showsPrec 11 sx . showSpace . showsPrec 11 sxs )To figure out what should go in place of ???=, observe that we require the type of each field to also be l4 instances. In other words, we need something like (l (E (a :: k)))4. But this isn't quite right, as the type variable a4 doesn't appear in the instance head. In fact, this aP type is really referring to an existentially quantified type variable in the C constructor, so it doesn't make sense to try and use it like this. Luckily, the QuantifiedConstraintse language extension provides a solution to this problem. This lets you write a context of the form  (forall a. l (E (a :: k)))/, which demands that there be an instance for l (E (a :: k))" that is parametric in the use of a/. This lets us write something closer to this: instance (forall a. l (E (a :: k))) =>  (E (z :: [k])) where ... The f! class is a thin wrapper around  (forall a. l (E (a :: k))). With f/, our final instance declaration becomes this:  instance f k => l (! (z :: [k])) where showsPrec p $ = showString "SNil" showsPrec p ( (sx :: E x) (sxs :: E xs)) = (showParen (p > 10) $ showString "SCons " . showsPrec 11 sx . showSpace . showsPrec 11 sxs) :: (ShowSing' x, ShowSing' xs) => ShowS $(Note that the actual definition of f is slightly more complicated than what this documentation might suggest. For the full story, as well as an explanation of why we need an explicit $(ShowSing' x, ShowSing' xs) => ShowS7 signature at the end, refer to the documentation for f`.)When singling a derived l instance,  singletons will also generate a l5 instance for the corresponding singleton type using f. In other words, if you give  singletons a derived l8 instance, then you'll receive the following in return: A promoted (PShow ) instance A singled (SShow ) instanceA l instance for the singleton typeWhat a bargain!effe(C) 2014 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&',-.HVXk singletonsThis bogus instance is helpful for people who want to define functions over Symbols that will only be used at the type level or as singletons. singletons This bogus  instance is helpful for people who want to define functions over Nats that will only be used at the type level or as singletons. A correct SNum instance for Nat singletons exists. singletonsAdapted from GHC's source code.ZCompute the logarithm of a number in the given base, rounded down to the closest integer. HELMNOPQRSTUVWXYZ[\]^_`abcdHEOPMNQRLVSZW\]aTUXY[^_`bcd7777-(C) 2013-2014 Richard Eisenberg, Jan StolarekBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HSVXkV0 E0E (C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.=>?@AHSTUVXkq{  singletons3Project the second element out of a dependent pair.  singletons2Project the first element out of a dependent pair.  singletonsUnicode shorthand for  .  singletonsThe singleton type for . singletonsUnicode shorthand for . singletonsA dependent pair. singletons2Project the first element out of a dependent pair. singletons3Project the second element out of a dependent pair. singletonsTProject the first element out of a dependent pair using continuation-passing style. singletonsUProject the second element out of a dependent pair using continuation-passing style. singletons Map across a  value in a dependent fashion. singletonsZip two ( values together in a dependent fashion. singletons!Convert an uncurried function on  to a curried one. Together,  and A witness an isomorphism such that the following identities hold: 'id1 :: forall a (b :: a ~> Type) (c :: 0 a b ~> Type). (forall (p :: Sigma a b).   p -> c @% p) -> (forall (p :: Sigma a b).   p -> c  p) id1 f =  a b c ( a b -c f) id2 :: forall a (b :: a ~> Type) (c :: > a b ~> Type). (forall (x :: a) (sx :: Sing x) (y :: b  x). Sing (; sx) -> Sing y -> c < (sx :&: y)) -> (forall (x :: a) (sx :: Sing x) (y :: b  x). Sing (; sx) -> Sing y -> c  (sx :&: y)) id2 f =  a b c ( a b @c f)  singletonsConvert a curried function on  to an uncurried one. Together,  and : witness an isomorphism. (Refer to the documentation for  for more details.)E     E     44(C) 2014 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./8>HUVXk`&!%("#$&')*,+-0./123456789:;<=>?@Aghijk&)*,+-0./!%("#$&'gk?@A<=>9:;78563412hij "#$*6+6,79:<=?@(C) 2014 Jan StolarekBSD-style (see LICENSE)%Jan Stolarek (jan.stolarek@p.lodz.pl) experimental non-portableNone&'-.HUVXkئB012pqrstuvwxyz{|}~Bpqr02stuxyzvw{|}~1r5u9 x0y0{    D(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXk'          !" #$%&'()*+,-./0123456789: !;"<#$'&%)(=>?@ABCDEFGHIJKLMNOPQRSTUV*W+X,-Y.Z/0[1\2]34^5_67`89:;abcdef<g=h>?i@jABCDEFGHIJKLMNOkPlQRmSnTUoVpWqXrsYtZ[u\v]^w_x`aybzcd{e|f}gh~ijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~$ 311!"&4(4)4*+-.45;4<=B4F1OP[\(C) 2019 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone &'-./HVk(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXk 9;:<=>?@A9;: ?@A<=> 414(C) 2016 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HUVXk}&stuvx&stuvx 1((C) 2014 Jan Stolarek, Richard EisenbergBSD-style (see LICENSE)%Jan Stolarek (jan.stolarek@p.lodz.pl) experimental non-portableNone&'-./8>HUVXk% !"#$%&'()*+,%+,)*'(%&"#$ !E(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXk4S           !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~6F-(C) 2013-2014 Richard Eisenberg, Jan StolarekBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.>HSUVXkj !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklm     nopqrstuvwxyz {!"#$%&'()*+,-.|/}0~123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~           !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM    N OPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw x!y"z{#|$}%~&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLM55Q9 9;>@   6(C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18HUVXfk+ singletons*GHC currently has no notion of type-level N*s, so we fake them with single-character s. singletonsThe shows7 functions return a function that prepends the output  to an existing R. This allows constant-time concatenation of results using function composition.P singletonsOB, but with an extra underscore so that its promoted counterpart () will not clash with the Show class.<P<P(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXk.GE   xzy{|}~G|}~xzy{E   G(C) 2016 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HVXk3*0PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~-(C) 2013-2014 Richard Eisenberg, Jan StolarekBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.HSVXk::! E ! " # $ % & - . / 0 1 2 3 4 5 6 7 8 9 : ; < = >!E ! & - > . = / < 0 ; 1 : " # $ % 2 3 4 5 6 7 8 9 (C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXk=M o r t { q v w | }  ~ y z u x p s                       o r t { q v w | }  ~ y z u x p s                      (C) 2018 Ryan ScottBSD-style (see LICENSE)'Richard Eisenberg (rae@cs.brynmawr.edu) experimental non-portableNone&'-./1FHVXkE E E(C) 2018 Ryan ScottBSD-style (see LICENSE)'Richard Eisenberg (rae@cs.brynmawr.edu) experimental non-portableNone&'-./1HUVXkG E ! " % & ) * E ! " % & ) *!(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXkJ4 | } ~  4 | } ~  (C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./18=?HUVXkMlE      {|lE    |{   -(C) 2013-2014 Richard Eisenberg, Jan StolarekBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneVS"Eqr !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ y z t u w r v ~  | } {             "ErWVUT y zqSRQPPO t u wN r v     ~  | }ML K!J O"IF%G$H#A*B)C(D'E&XI"#H$G%F&E'D { M :1NQ;0</=.>-(C)BYZ[\*A+@]^_`,?->.=/<0;1:2938R4756U?,J!K S6574T@+L8392 VabcdeWXYZ[\]^ _`abcdefghij klm nopqrstuvwxyz{ |}~fgh      ijklmnopqrstuvwxyz{|}~      "(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./8=?HUVXkf(C) 2016 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./HUVXkhE      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~E'()?@A123456789:;<=> !"BC*+,-  ./0DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~#$%&   #(C) 2017 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./HVXkrY (C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./8=?HUVXktM E $&()%'*+,-./012345678;<=>BCDOPQRSTUVWX ! " % & ) *M$&()%'E ! " ; BCD78456-./*+, % & ) *<=>OPQRST0123UVWX(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-./8=?HUVXkx     !"#9:?@AEFGHIJKLMNYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~           9:      FE   NGHIJKLM?@A!"#   [\]YZ     }~^_`abcdefghijklmnopqrstuvwxyz{| 114 (C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&',-.1=?FHUVXgkq` !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi`E$%&RCD?@ABGF45=>QPcdOgihef:;<789632.-,+*)('/10STUVWXYZ[\]^_`abNMLKJIH#"!   (C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneV singletons The function  generates a case expression where each right-hand side is identical. This may be useful if the type-checker requires knowledge of which constructor is used to satisfy equality or type-class constraints, but where each constructor is treated the same. singletons The function  generates a case expression where each right-hand side is identical. This may be useful if the type-checker requires knowledge of which constructor is used to satisfy equality or type-class constraints, but where each constructor is treated the same. For  , unlike J, the scrutinee is a singleton. But make sure to pass in the name of the original datatype, preferring ''Maybe over ''SMaybe. singletons-The head of the type of the scrutinee. (Like ''Maybe or ''Bool.) singletons*The scrutinee, in a Template Haskell quote singletons%The body, in a Template Haskell quote singletons>The head of the type the scrutinee's type is based on. (Like ''Maybe or ''Bool.) singletons*The scrutinee, in a Template Haskell quote singletons%The body, in a Template Haskell quote !"#$%&'()*+,-./0123456789:;<=>?@AB@CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnotuvwxyz{|}~3FJKLMNOVWX   LTUVW[\u $&()%'0123456789;:<=>?@Axzy{|}~ o r t { q v w | }  ~ y z u x p s | } ~  >wxyvz{|}~JKLF3MNO jkolmn9;: o r t { q v w | }  ~ y z u x p s|}~xzy{ | } ~  $&()%'u=>LVTUW\[VWX  ?@A<=>  784560123tu$(C) 2018 Ryan ScottBSD-style (see LICENSE) Ryan Scott experimental non-portableNone&'-.=?EHUVXk'  singletonsA drop-in replacement for *. This also exists at the value-level as . singletons Convert a  to a  from  GHC.TypeLits. singletons A type-level  ` which uses  as its text kind. singletonsA value-level  ` which uses  as its text type. singletons%A description of a custom type error.This is a variation on ; that is parameterized over what text type is used in the % constructor. Instantiating it with  gives you , and instantiating it with  gives you . singletonsShow the text as is. singletonsPretty print the type. ShowType :: k -> ErrorMessage singletons4Put two pieces of error message next to each other. singletons8Stack two pieces of error message on top of each other. singletons Convert an  into a human-readable . singletonsThe value-level counterpart to .-Note that this is not quite as expressive as ,, as it is unable to print the contents of % constructors (it will simply print "<type>" in their place). singletonsThe singleton for .-Note that this is not quite as expressive as , as it is unable to handle  constructors at all.EE6565 (C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNoneV*  !"#$%&'()*+,-./0123456789:;<=>?@AB@CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi    01234567<=>?DEFIJKLKLMNOPQRSTUVWXLSTUVWXYZ[\]^_`!%("#$&')*,+-0./*+,-./0123456789:;<=>?@Aghijkqrstuvwxy{  !"#$%&()*+,-./456789:;<=>?@AF[\] !"#$%&'( !()*+,-23:ADEFGHMOWXYZ[\]^_`nopqrstuvwxyz{#$%&'*189>?@ABCJKLMSTUVWPxzy{|}~ ! " # $ % & o { q r t v w | }  ~ y          | } ~  xF?3702LVSZW\ !"#$%&'(]|}~xzy{9:; $%&()  F o { q r t v w | }  ~ | } ~  stuxyvw{qr:1WVUT yS    ML K!JOF%G$H#A*D'E& M(C)B*A+@,?->2938 ! & PDE456<=>1 " # $ %    TUXY[^_`?@A<=>78456-./*+,!"#  [\] _`WXYZ[\]^ nopqrstuvwxyz{   %(C) 2013 Richard EisenbergBSD-style (see LICENSE) Ryan Scott experimental non-portableNone.HVV singletonsIProduce a representation and singleton for the collection of types given. A datatype Rep is created, with one constructor per type in the declared universe. When this type is promoted by the singletons library, the constructors become full types in *&, not just promoted data constructors. For example, )$(singletonStar [''Nat, ''Bool, ''Maybe])generates the following: @data Rep = Nat | Bool | Maybe Rep deriving (Eq, Ord, Read, Show)$and its singleton. However, because Rep is promoted to *0, the singleton is perhaps slightly unexpected: data SRep (a :: *) where SNat :: Sing Nat SBool :: Sing Bool SMaybe :: Sing a -> Sing (Maybe a) type instance Sing = SRepThe unexpected part is that Nat, Bool, and Maybe above are the real Nat, Bool, and Maybe&, not just promoted data constructors."Please note that this function is very$ experimental. Use at your own risk. singletonsA list of Template Haskell Name s for types  !"#$%&'()*+,-./0123456789:;<=>?@AB@CDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnotuvwxyz{|}~$%&'()01234567<=>?DEFIJKLKLMNOPQRSTUVWX   LTUVW[\u $&()%'%&'()0123456789;::;<=>?@Axzy{|}~}~ o r t { q v w | }  ~ y z u x p s | } ~  HIJHKLMNOMNPHIQHIRHISHITHIUVWXYZ[H\]H^_HK`HIaHbcHbcHdeHdfHghHijHikHilHim&n&o&p&q&r&s&t&u&v&v&w&x&y&z&{&|&}&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&  >>>>>>>>>>>>>>?????????????????????@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @ @ @ @@@@@@@@@@@@@@@@@@@@@@ @!@"@#@$@%@&@'@(@)@*@+@,@-@.@/@0@1@2@3@4@5@6@7@8@9@:@; < = > ? @ ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~B      !"#$%&'()*+,-./01234567899:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~CCCCCCCCCCCCCCCCCCCCCCCCC      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~_      !"#$%&'()*+,-./0123456D7D8D9D:D;D<D=D>D?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD]      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~EEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E E EEEEEEEEEEEEEEEEEEEEEEEEEE E!E"E"E#E$E%E&E'E(E)E)E*E+E,E-E.E/E0E0E1E2E3E4E5E6E7E7E8E9E:E;E<E=E>E>E?E@EAEBECEDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;F<F=F>F?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                        ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~                       $ %                                                                                                          + ,  2 3                                ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  6 4 2                           ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~  1 3 5                                                                            ! " # $ % & ' ( ) * + + , - .!" / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~   ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! "! #! $! %! &! '! (! )! *! +! ,! -! .! /! 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! :! ;! <! =! >! ?! @! A! B! C! D! E! F! G! H! I! J! K! L! M! N! O! P! Q! R! S! T! U! V! W! X! Y! Z! [! \! ]! ^! _! `! a! b! c! d! e! f! g! h! i! j! k! l! m! n! o! p! q! r! s! t! u! v! w! x! y! z! {! |! }! ~! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !                                                                              : 5    !       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~     $        ) !"# .$%&' 8() =*+,-. /0 123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi"j"k"l"m"n"o"p"q"r"s"t"u"v"w"x"y"z"{"|"}"~"""""""""""""""""""""""""""""""""""""""""""""""""""""""""" SEGFH| TU{OQPRJIwxyrsuvkz}VY[]i  #$   !"   +,-%&'3456789:12bJGHnprIuNQL`UVXYRSTy{z|Pvw Ox       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdef-0./ s ghijklmnopqrstuvwxyz{|}~ q ################                         !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~                                           $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%&& & H  MN H&&&&&&&&&&MHdH'' '!'!'"'#'$'%'&'''('(')'*'+','-'.'/'0'1'2'3'4'5'6'7'8'7'6'9'9':':';'<'='>'?'@'A'B'C'D'E'F'G'H'I'J'K'L'M'N'O'P'P'Q'R'S'T'U'V'V'W'X'Y'Z'['\']'^'_'_'`'a'b'c'c'd'd'e'f'f'g'h'i'j'k'l'm'n(o(p(q(rMNs(t(uvwxyz{v|}(~(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()H H)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6))7)8)9):);*<*=*>+?+@+A,B,C,D,E,F,G,H,I,J,K,L,M,N-O-P-Q-R-I-S-T-U-V-W.X.Y.Z/[0\0]0^0_0`0a0b0c0d0e0f0g0h0i1j2k2l3m3n3o3p3q3rHst3u3v3w3x3y3z3{3|3}3~3334455555555555567Hg7777789:::::;<=M================>>>>>>>>>>>>>>>>>>>??????????????????????@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@ @@ @@ @@@@@@@@ @ @ @ @ @ @1MNHHMMNMNHHHHIHIHDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;D<D=D>D?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D DDDDDDDDDDDDDDDDDDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;D<D=D>D?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D D D D DDDDDDDDDDDDDDDDDDD D!D"D#D$D%D&D'D(D)D*D+D,D-D.D/D0D1D2D3D4D5D6D7D8D9D:D;D<D=D>D?D@DADBDCDDDEDFDGDHDIDJDKDLDMDNDODPDQDRDSDTDUDVDWDXDYDZD[D\D]D^D_D`DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD{D|D}D~DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5E6E7E8E9E:E;E<E=E>E?E@EAEBECEDEEEFEGEHEIEJEKELEMENEOEPEQERESETEUEVEWEXEYEZE[E\E]E^E_E`EaEbEcEdEeEfEgEhEiEjEkElEmEnEoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E E E E EEEEEEEEEEEEEEEEEEE E!E"E#E$E%E&E'E(E)E*E+E,E-E.E/E0E1E2E3E4E5E6E7E8E9E:E;E<E=E>E?E@EAEBECEDEEEFEGEHEIEJEKELEMENEOEPEQERESETEUEVEWEXEYEZE[E\E]E^E_E`EaEbEcEdEeEfEgEhEiEjEkElEmEnEoEpEqErEsEtEuEvEwExEyEzE{E|E}E~EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFF F F F F F F F F F F F F F F F F F FF F F FFF0FFF FF FFFFFFFFFFFFFFFF FF FF FF F FF FF FFF FF FF F FF F FF FF F FF F FF F2F>F3FF F+F<F,FF FFFFFF F F F F F FF FF FF F FF FF FF FFFFFFFFFFF FF FF F F F F!F F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;F<F=F>F?F@FAFBFCFDF FEF FFF F FGF FHF FIFJF FKF FLF FMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjF FkF F FlF FmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F$F:F%FF8FF F}F F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;F<F=F>F?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;F<F=F>F?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F F F FFFFFFFFFFFFFFFFFFF F!F"F#F$F%F&F'F(F)F*F+F,F-F.F/F0F1F2F3F4F5F6F7F8F9F:F;F<F=F>F?F@FAFBFCFDFEFFFGFHFIFJFKFLFMFNFOFPFQFRFSFTFUFVFWFXFYFZF[F\F]F^F_F`FaFbFcFdFeFfFgFhFiFjFkFlFmFnFoFpFqFrFsFtFuFvFwFxFyFzF{F|F}F~FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF F F FF F F F F F F F F F F F F F !F "F F F FFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFMNHgGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3G4G5G6G7G8G9G:G;G<G=G>G?G@GAGBGCGDGEGFGGGHGIGJGKGLGMGNGOGPGQGRGSGTGUGVGWGXGYGZG[G\G]G^G_G`GaGbGcGdGeGfGgGhGiGjGkGlGmGnGoGpGqGrGsGtGuGvGwGxGyGzG{G|G}G~GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG G G G G GGGGGGGGGGGGGGGGGGG G!G"G#G$G%G&G'G(G)G*G+G,G-G.G/G0G1G2G3HKHK456singletons-2.6-inplaceData.Singletons.TypeLitsData.Singletons.Prelude.BoolData.Singletons.Prelude.OrdData.Singletons.Prelude.MaybeData.Singletons.Prelude.EitherData.Singletons.Prelude.Const!Data.Singletons.Prelude.SemigroupData.Singletons.Decide#Data.Singletons.Prelude.ApplicativeData.SingletonsData.Singletons.PreludeData.Singletons.Prelude.Void&Data.Singletons.SuppressUnusedWarningsData.Singletons.THData.Singletons.Prelude.Tuple Data.Singletons.Prelude.Identity%Data.Singletons.Prelude.List.NonEmptyData.Singletons.Prelude.ListData.Singletons.Prelude.EqData.Singletons.TypeRepTYPEData.Singletons.ShowSingData.Singletons.SigmaData.Singletons.Prelude.NumData.Singletons.Prelude.BaseData.Singletons.Prelude.MonadData.Singletons.Prelude.Functor"Data.Singletons.Prelude.Monad.Fail Data.Singletons.Prelude.FunctionData.Singletons.Prelude.EnumData.Singletons.Prelude.MonoidData.Singletons.Prelude.Show Data.Singletons.Prelude.Foldable#Data.Singletons.Prelude.Traversable!Data.Singletons.Prelude.Monad.Zip Data.Singletons.Prelude.IsStringData.Singletons.TypeErrorData.Singletons.CustomStarData.Singletons.InternalData.Singletons.SyntaxData.Singletons.UtilData.Singletons.NamesData.Singletons.Single.FixityData.Singletons.Promote.TypeData.Singletons.Promote.MonadData.Singletons.Single.MonadData.Singletons.Single.TypeData.Singletons.Promote.EqData.Singletons.Promote.DefunData.Singletons.Single.DefunData.Singletons.Single.DataData.Singletons.Deriving.UtilData.Singletons.Deriving.InferData.Singletons.Single.Eq$Data.Singletons.Deriving.TraversableData.Singletons.Deriving.ShowData.Singletons.Deriving.Ord!Data.Singletons.Deriving.Foldable Data.Singletons.Deriving.FunctorData.Singletons.Deriving.Enum Data.Singletons.Deriving.BoundedData.Singletons.PartitionData.Singletons.PromoteData.Singletons.Single!Data.Singletons.Prelude.InstancesDTE==!Data.Singletons.TypeLits.Internal&Data.Singletons.Prelude.Monad.Internal*Data.Singletons.Prelude.Semigroup.Internal%Data.Singletons.Prelude.List.Internal4Data.Singletons.Prelude.List.Internal.Disambiguationbase GHC.TypeNatsKnownNat GHC.TypeLits KnownSymbolghc-prim GHC.TypesNatSymbol^<=?DivModLog2bool_thenCmpmaybe_either_GetConstoption_ Data.VoidVoidData.Functor.ConstConst symbolValnatVal Data.ProxyProxyData.Type.EqualityRefl:~:GHC.ShowShowSData.Type.BoolIf&&||Not SingFunction8 SingFunction7 SingFunction6 SingFunction5 SingFunction4 SingFunction3 SingFunction2 SingFunction1SLambda applySingTyCon8TyCon7TyCon6TyCon5TyCon4TyCon3TyCon2TyCon1TyCon@@Apply~>TyFun SingInstance UnwrapSing SWrappedSing SWrapSing sUnwrapSing WrappedSingWrapSing unwrapSingSomeSingSingKindDemotefromSingtoSingSingIsingSingSameKindKindOfSLambda8SLambda7SLambda6SLambda5SLambda4SLambda3SLambda2FromSing singInstancesingFun1singFun2singFun3singFun4singFun5singFun6singFun7singFun8 unSingFun1 unSingFun2 unSingFun3 unSingFun4 unSingFun5 unSingFun6 unSingFun7 unSingFun8 withSingI withSomeSingwithSingsingThat singByProxy singByProxy#demoteSDecide%~DecisionProved DisprovedRefuteddecideEqualitydecideCoercion$fTestCoercionkWrappedSing$fTestEqualitykWrappedSingSuppressUnusedWarningssuppressUnusedWarnings genPromotionspromote promoteOnlygenDefunSymbolspromoteEqInstancespromoteOrdInstancespromoteOrdInstancepromoteBoundedInstancespromoteBoundedInstancepromoteEnumInstancespromoteEnumInstancepromoteShowInstancespromoteShowInstancepromoteEqInstance genSingletons singletonssingletonsOnlysingEqInstancessingEqInstancesingEqInstancesOnlysingEqInstanceOnlysingDecideInstancessingDecideInstancesingOrdInstancessingOrdInstancesingBoundedInstancessingBoundedInstancesingEnumInstancessingEnumInstancesingShowInstancesingShowInstancesshowSingInstanceshowSingInstancessingITyConInstancessingITyConInstanceSTuple0 Tuple0Sym0 SOrderingSLTSEQSGTGTSym0EQSym0LTSym0SBoolSFalseSTrueTrueSym0 FalseSym0 SIdentity sRunIdentity IdentitySym0 IdentitySym1 RunIdentityRunIdentitySym0RunIdentitySym1STuple7 Tuple7Sym0 Tuple7Sym1 Tuple7Sym2 Tuple7Sym3 Tuple7Sym4 Tuple7Sym5 Tuple7Sym6 Tuple7Sym7STuple6 Tuple6Sym0 Tuple6Sym1 Tuple6Sym2 Tuple6Sym3 Tuple6Sym4 Tuple6Sym5 Tuple6Sym6STuple5 Tuple5Sym0 Tuple5Sym1 Tuple5Sym2 Tuple5Sym3 Tuple5Sym4 Tuple5Sym5STuple4 Tuple4Sym0 Tuple4Sym1 Tuple4Sym2 Tuple4Sym3 Tuple4Sym4STuple3 Tuple3Sym0 Tuple3Sym1 Tuple3Sym2 Tuple3Sym3STuple2 Tuple2Sym0 Tuple2Sym1 Tuple2Sym2SVoid SNonEmpty:%|:|@#@$:|@#@$$:|@#@$$$SEitherSLeftSRight RightSym0 RightSym1LeftSym0LeftSym1SListSNilSCons:@#@$:@#@$$:@#@$$$NilSym0SMaybeSNothingSJustJustSym0JustSym1 NothingSym0Absurd AbsurdSym0 AbsurdSym1sAbsurd$fSingI->AbsurdSym0$$fSuppressUnusedWarnings->AbsurdSym0FstSndCurryUncurrySwapFstSym0FstSym1SndSym0SndSym1 CurrySym0 CurrySym1 CurrySym2 CurrySym3 UncurrySym0 UncurrySym1 UncurrySym2SwapSym0SwapSym1sSwapsUncurrysCurrysSndsFst$fSingI->SwapSym0"$fSuppressUnusedWarnings->SwapSym0$fSingI->CurrySym2#$fSuppressUnusedWarnings->CurrySym2$fSingI->CurrySym1#$fSuppressUnusedWarnings->CurrySym1$fSingI->CurrySym0#$fSuppressUnusedWarnings->CurrySym0$fSingI->SndSym0!$fSuppressUnusedWarnings->SndSym0$fSingI->FstSym0!$fSuppressUnusedWarnings->FstSym0$fSingI->UncurrySym1%$fSuppressUnusedWarnings->UncurrySym1$fSingI->UncurrySym0%$fSuppressUnusedWarnings->UncurrySym0Bool_ Bool_Sym0 Bool_Sym1 Bool_Sym2 Bool_Sym3sBool_$fSingI->Bool_Sym2#$fSuppressUnusedWarnings->Bool_Sym2$fSingI->Bool_Sym1#$fSuppressUnusedWarnings->Bool_Sym1$fSingI->Bool_Sym0#$fSuppressUnusedWarnings->Bool_Sym0 Otherwise OtherwiseSym0 sOtherwise%&&&&@#@$&&@#@$$&&@#@$$$%||$fSingI->&&@#@$$!$fSuppressUnusedWarnings->&&@#@$$$fSingI->&&@#@$ $fSuppressUnusedWarnings->&&@#@$||@#@$||@#@$$||@#@$$$sNot$fSingI->||@#@$$!$fSuppressUnusedWarnings->||@#@$$$fSingI->||@#@$ $fSuppressUnusedWarnings->||@#@$NotSym0NotSym1sIf$fSingI->NotSym0!$fSuppressUnusedWarnings->NotSym0 DefaultEqPEq/=SEq%==%/= DefaultEqSym0 DefaultEqSym1 DefaultEqSym2/=@#@$/=@#@$$/=@#@$$$==@#@$==@#@$$==@#@$$$!$fSuppressUnusedWarnings->==@#@$$ $fSuppressUnusedWarnings->==@#@$!$fSuppressUnusedWarnings->/=@#@$$ $fSuppressUnusedWarnings->/=@#@$'$fSuppressUnusedWarnings->DefaultEqSym1'$fSuppressUnusedWarnings->DefaultEqSym0$fSingI->/=@#@$$$fSingI->/=@#@$$fSingI->==@#@$$$fSingI->==@#@$$fSEq() $fSEqOrdering $fSEqBool $fSEqIdentity $fSEq(,,,,,,) $fSEq(,,,,,) $fSEq(,,,,) $fSEq(,,,) $fSEq(,,)$fSEq(,) $fSEqVoid $fSEqNonEmpty $fSEqEither$fSEq[] $fSEqMaybe $fPEqMaybe$fPEq[] $fPEqEither $fPEqNonEmpty $fPEqVoid$fPEq(,) $fPEq(,,) $fPEq(,,,) $fPEq(,,,,) $fPEq(,,,,,) $fPEq(,,,,,,) $fPEqIdentity $fPEqBool $fPEqOrdering$fPEq()SomeTypeRepTYPE $fSDecideTYPE $fSEqTYPE $fPEqTYPE $fSingITYPEa$fSingKindTYPE$fShowSomeTypeRepTYPE$fOrdSomeTypeRepTYPE$fEqSomeTypeRepTYPESOrdsCompare%<%<=%>%>=sMaxsMinPOrdCompare<<=>>=MaxMinMinSym0MinSym1MinSym2MaxSym0MaxSym1MaxSym2>=@#@$>=@#@$$>=@#@$$$>@#@$>@#@$$>@#@$$$<=@#@$<=@#@$$<=@#@$$$<@#@$<@#@$$<@#@$$$ CompareSym0 CompareSym1 CompareSym2 Comparing ComparingSym0 ComparingSym1 ComparingSym2 ComparingSym3 sComparingQ$fSuppressUnusedWarnings->Let6989586621679394065Scrutinee_6989586621679393956Sym1Q$fSuppressUnusedWarnings->Let6989586621679394065Scrutinee_6989586621679393956Sym05$fSuppressUnusedWarnings->Min_6989586621679394171Sym05$fSuppressUnusedWarnings->Min_6989586621679394171Sym15$fSuppressUnusedWarnings->Max_6989586621679394153Sym05$fSuppressUnusedWarnings->Max_6989586621679394153Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679394135Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679394135Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679394117Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679394117Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679394099Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679394099Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679394081Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679394081Sym19$fSuppressUnusedWarnings->Compare_6989586621679394057Sym09$fSuppressUnusedWarnings->Compare_6989586621679394057Sym1 $fSuppressUnusedWarnings-><=@#@$!$fSuppressUnusedWarnings-><=@#@$$%$fSuppressUnusedWarnings->CompareSym0%$fSuppressUnusedWarnings->CompareSym1!$fSuppressUnusedWarnings->MinSym1!$fSuppressUnusedWarnings->MinSym0!$fSuppressUnusedWarnings->MaxSym1!$fSuppressUnusedWarnings->MaxSym0!$fSuppressUnusedWarnings->>=@#@$$ $fSuppressUnusedWarnings->>=@#@$ $fSuppressUnusedWarnings->>@#@$$$fSuppressUnusedWarnings->>@#@$Q$fSuppressUnusedWarnings->Let6989586621679394179Scrutinee_6989586621679393970Sym1Q$fSuppressUnusedWarnings->Let6989586621679394179Scrutinee_6989586621679393970Sym0Q$fSuppressUnusedWarnings->Let6989586621679394161Scrutinee_6989586621679393968Sym1Q$fSuppressUnusedWarnings->Let6989586621679394161Scrutinee_6989586621679393968Sym0Q$fSuppressUnusedWarnings->Let6989586621679394070Scrutinee_6989586621679393958Sym1Q$fSuppressUnusedWarnings->Let6989586621679394070Scrutinee_6989586621679393958Sym0 $fSuppressUnusedWarnings-><@#@$$$fSuppressUnusedWarnings-><@#@$Q$fSuppressUnusedWarnings->Let6989586621679394143Scrutinee_6989586621679393966Sym1Q$fSuppressUnusedWarnings->Let6989586621679394143Scrutinee_6989586621679393966Sym0Q$fSuppressUnusedWarnings->Let6989586621679394125Scrutinee_6989586621679393964Sym1Q$fSuppressUnusedWarnings->Let6989586621679394125Scrutinee_6989586621679393964Sym0Q$fSuppressUnusedWarnings->Let6989586621679394107Scrutinee_6989586621679393962Sym1Q$fSuppressUnusedWarnings->Let6989586621679394107Scrutinee_6989586621679393962Sym0Q$fSuppressUnusedWarnings->Let6989586621679394089Scrutinee_6989586621679393960Sym1Q$fSuppressUnusedWarnings->Let6989586621679394089Scrutinee_6989586621679393960Sym0'$fSuppressUnusedWarnings->ComparingSym2'$fSuppressUnusedWarnings->ComparingSym1'$fSuppressUnusedWarnings->ComparingSym0$fSingI->MinSym1$fSingI->MinSym0$fSingI->MaxSym1$fSingI->MaxSym0$fSingI->>=@#@$$$fSingI->>=@#@$$fSingI->>@#@$$$fSingI->>@#@$$fSingI-><=@#@$$$fSingI-><=@#@$$fSingI-><@#@$$$fSingI-><@#@$$fSingI->CompareSym1$fSingI->CompareSym0$fSingI->ComparingSym2$fSingI->ComparingSym1$fSingI->ComparingSym0SDownDownSym0DownSym1"$fSuppressUnusedWarnings->DownSym0$fSingI->DownSym0$fSingIDownDown$fSingKindDown$fTestCoercionDownSDown$fTestEqualityDownSDown $fSDecideDown $fSEqDown $fSOrdDown9$fSuppressUnusedWarnings->Compare_6989586621679403478Sym1 $fPOrdDown9$fSuppressUnusedWarnings->Compare_6989586621679403478Sym0 $fPEqDownThenCmp ThenCmpSym0 ThenCmpSym1 ThenCmpSym2sThenCmp$fSingI->ThenCmpSym1%$fSuppressUnusedWarnings->ThenCmpSym1$fSingI->ThenCmpSym0%$fSuppressUnusedWarnings->ThenCmpSym0$fSOrd()$fSOrdOrdering $fSOrdBool$fSOrdIdentity$fSOrd(,,,,,,) $fSOrd(,,,,,) $fSOrd(,,,,) $fSOrd(,,,) $fSOrd(,,) $fSOrd(,) $fSOrdVoid$fSOrdNonEmpty $fSOrdEither$fSOrd[] $fSOrdMaybe9$fSuppressUnusedWarnings->Compare_6989586621679404751Sym1 $fPOrdMaybe9$fSuppressUnusedWarnings->Compare_6989586621679404751Sym09$fSuppressUnusedWarnings->Compare_6989586621679404783Sym1$fPOrd[]9$fSuppressUnusedWarnings->Compare_6989586621679404783Sym09$fSuppressUnusedWarnings->Compare_6989586621679404829Sym1 $fPOrdEither9$fSuppressUnusedWarnings->Compare_6989586621679404829Sym09$fSuppressUnusedWarnings->Compare_6989586621679404858Sym1$fPOrdNonEmpty9$fSuppressUnusedWarnings->Compare_6989586621679404858Sym09$fSuppressUnusedWarnings->Compare_6989586621679404876Sym1 $fPOrdVoid9$fSuppressUnusedWarnings->Compare_6989586621679404876Sym09$fSuppressUnusedWarnings->Compare_6989586621679404900Sym1 $fPOrd(,)9$fSuppressUnusedWarnings->Compare_6989586621679404900Sym09$fSuppressUnusedWarnings->Compare_6989586621679404939Sym1 $fPOrd(,,)9$fSuppressUnusedWarnings->Compare_6989586621679404939Sym09$fSuppressUnusedWarnings->Compare_6989586621679404989Sym1 $fPOrd(,,,)9$fSuppressUnusedWarnings->Compare_6989586621679404989Sym09$fSuppressUnusedWarnings->Compare_6989586621679405050Sym1 $fPOrd(,,,,)9$fSuppressUnusedWarnings->Compare_6989586621679405050Sym09$fSuppressUnusedWarnings->Compare_6989586621679405122Sym1 $fPOrd(,,,,,)9$fSuppressUnusedWarnings->Compare_6989586621679405122Sym09$fSuppressUnusedWarnings->Compare_6989586621679405205Sym1$fPOrd(,,,,,,)9$fSuppressUnusedWarnings->Compare_6989586621679405205Sym09$fSuppressUnusedWarnings->Compare_6989586621679405250Sym1$fPOrdIdentity9$fSuppressUnusedWarnings->Compare_6989586621679405250Sym09$fSuppressUnusedWarnings->Compare_6989586621679405264Sym1 $fPOrdBool9$fSuppressUnusedWarnings->Compare_6989586621679405264Sym09$fSuppressUnusedWarnings->Compare_6989586621679405274Sym1$fPOrdOrdering9$fSuppressUnusedWarnings->Compare_6989586621679405274Sym09$fSuppressUnusedWarnings->Compare_6989586621679405284Sym1$fPOrd()9$fSuppressUnusedWarnings->Compare_6989586621679405284Sym0ErrorSSymbolSSymSNat withKnownNatwithKnownSymbolErrorWithoutStackTrace ErrorSym0 ErrorSym1sError UndefinedErrorWithoutStackTraceSym0ErrorWithoutStackTraceSym1sErrorWithoutStackTrace UndefinedSym0 sUndefined%^^@#@$^@#@$$^@#@$$$%<=?<=?@#@$<=?@#@$$ <=?@#@$$$ ShowSing'ShowSing $fShowSSymbol $fShowSNat $fShowSing'kz$fShowSWrappedSing$fShowWrappedSing $fShowSingk $fShowSTuple0$fShowSOrdering $fShowSBool$fShowSIdentity $fShowSTuple7 $fShowSTuple6 $fShowSTuple5 $fShowSTuple4 $fShowSTuple3 $fShowSTuple2 $fShowSVoid$fShowSNonEmpty $fShowSEither $fShowSList $fShowSMaybe $fShowSymbol$fMonoidSymbol$fSemigroupSymbol$fIsStringSymbol $fOrdSymbol $fEqSymbol $fShowNat $fEnumNat$fOrdNat$fEqNat$fNumNatKnownSymbolSym0KnownSymbolSym1 KnownNatSym0 KnownNatSym1sLog2&$fSuppressUnusedWarnings->KnownNatSym0)$fSuppressUnusedWarnings->KnownSymbolSym0Log2Sym0Log2Sym1sDiv$fSingI->Log2Sym0"$fSuppressUnusedWarnings->Log2Sym0DivSym0DivSym1DivSym2sMod$fSingI->DivSym1!$fSuppressUnusedWarnings->DivSym1$fSingI->DivSym0!$fSuppressUnusedWarnings->DivSym0ModSym0ModSym1ModSym2$fSingI->ModSym1!$fSuppressUnusedWarnings->ModSym1$fSingI->ModSym0!$fSuppressUnusedWarnings->ModSym0DivModQuotRemQuotRem DivModSym0 DivModSym1 DivModSym2 QuotRemSym0 QuotRemSym1 QuotRemSym2QuotSym0QuotSym1QuotSym2RemSym0RemSym1RemSym2sDivModsQuotRemsQuotsRem!$fSuppressUnusedWarnings->RemSym1!$fSuppressUnusedWarnings->RemSym0"$fSuppressUnusedWarnings->QuotSym1"$fSuppressUnusedWarnings->QuotSym0$$fSuppressUnusedWarnings->DivModSym1$$fSuppressUnusedWarnings->DivModSym0%$fSuppressUnusedWarnings->QuotRemSym1%$fSuppressUnusedWarnings->QuotRemSym0Maybe_ Maybe_Sym0 Maybe_Sym1 Maybe_Sym2 Maybe_Sym3sMaybe_$fSingI->Maybe_Sym2$$fSuppressUnusedWarnings->Maybe_Sym2$fSingI->Maybe_Sym1$$fSuppressUnusedWarnings->Maybe_Sym1$fSingI->Maybe_Sym0$$fSuppressUnusedWarnings->Maybe_Sym0IsJust IsNothingFromJust FromMaybe MaybeToList ListToMaybe CatMaybesMapMaybe IsJustSym0 IsJustSym1 IsNothingSym0 IsNothingSym1 FromJustSym0 FromJustSym1 FromMaybeSym0 FromMaybeSym1 FromMaybeSym2MaybeToListSym0MaybeToListSym1ListToMaybeSym0ListToMaybeSym1 CatMaybesSym0 CatMaybesSym1 MapMaybeSym0 MapMaybeSym1 MapMaybeSym2 sMapMaybe sCatMaybes sListToMaybe sMaybeToList sFromMaybe sFromJust sIsNothingsIsJustQ$fSuppressUnusedWarnings->Let6989586621679516459Scrutinee_6989586621679516322Sym2Q$fSuppressUnusedWarnings->Let6989586621679516459Scrutinee_6989586621679516322Sym1Q$fSuppressUnusedWarnings->Let6989586621679516459Scrutinee_6989586621679516322Sym0$fSingI->MapMaybeSym1$fSingI->MapMaybeSym0&$fSuppressUnusedWarnings->MapMaybeSym0&$fSuppressUnusedWarnings->MapMaybeSym16$fSuppressUnusedWarnings->Let6989586621679516455RsSym26$fSuppressUnusedWarnings->Let6989586621679516455RsSym16$fSuppressUnusedWarnings->Let6989586621679516455RsSym0$fSingI->CatMaybesSym0'$fSuppressUnusedWarnings->CatMaybesSym0$fSingI->ListToMaybeSym0)$fSuppressUnusedWarnings->ListToMaybeSym0$fSingI->MaybeToListSym0)$fSuppressUnusedWarnings->MaybeToListSym0$fSingI->FromMaybeSym1'$fSuppressUnusedWarnings->FromMaybeSym1$fSingI->FromMaybeSym0'$fSuppressUnusedWarnings->FromMaybeSym0$fSingI->FromJustSym0&$fSuppressUnusedWarnings->FromJustSym0$fSingI->IsNothingSym0'$fSuppressUnusedWarnings->IsNothingSym0$fSingI->IsJustSym0$$fSuppressUnusedWarnings->IsJustSym0ShowSingApply' ShowSingApply ShowApply' ShowApplySndSigmaFstSigmaSΣSSigma:%&:ΣSigma:&:fstSigmasndSigma projSigma1 projSigma2mapSigmazipSigma currySigma uncurrySigma$fSingISigma:&:$fShowApply'afx $fShowApplyaf $fShowSigma$fShowSingApply'afxz$fShowSingApplyaf $fShowSSigmaSNum%+%-%*sNegatesAbssSignum sFromIntegerPNum+-*NegateAbsSignum FromIntegerFromIntegerSym0FromIntegerSym1 SignumSym0 SignumSym1AbsSym0AbsSym1 NegateSym0 NegateSym1*@#@$*@#@$$*@#@$$$-@#@$-@#@$$-@#@$$$+@#@$+@#@$$+@#@$$$8$fSuppressUnusedWarnings->Negate_6989586621679529395Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679529384Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679529384Sym1$$fSuppressUnusedWarnings->NegateSym0$fSuppressUnusedWarnings->-@#@$ $fSuppressUnusedWarnings->-@#@$$$fSuppressUnusedWarnings->+@#@$ $fSuppressUnusedWarnings->+@#@$$)$fSuppressUnusedWarnings->FromIntegerSym0$$fSuppressUnusedWarnings->SignumSym0!$fSuppressUnusedWarnings->AbsSym0 $fSuppressUnusedWarnings->*@#@$$$fSuppressUnusedWarnings->*@#@$:$fSuppressUnusedWarnings->TFHelper_6989586621679529422Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679529422Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679529434Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679529434Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679529446Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621679529446Sym08$fSuppressUnusedWarnings->Negate_6989586621679529457Sym05$fSuppressUnusedWarnings->Abs_6989586621679529464Sym08$fSuppressUnusedWarnings->Signum_6989586621679529471Sym0 $fPNumDown=$fSuppressUnusedWarnings->FromInteger_6989586621679529478Sym0 $fSNumNat$fSingI->FromIntegerSym0$fSingI->SignumSym0$fSingI->AbsSym0$fSingI->NegateSym0$fSingI->*@#@$$$fSingI->*@#@$$fSingI->-@#@$$$fSingI->-@#@$$fSingI->+@#@$$$fSingI->+@#@$ $fSNumDown $fPNumNatSubtract SubtractSym0 SubtractSym1 SubtractSym2 sSubtract$fSingI->SubtractSym1&$fSuppressUnusedWarnings->SubtractSym1$fSingI->SubtractSym0&$fSuppressUnusedWarnings->SubtractSym0FoldrMap++Id.FlipAsTypeOf$$!UntilSeq FoldrSym0 FoldrSym1 FoldrSym2 FoldrSym3MapSym0MapSym1MapSym2++@#@$++@#@$$++@#@$$$IdSym0IdSym1 ConstSym0 ConstSym1 ConstSym2.@#@$.@#@$$.@#@$$$.@#@$$$$FlipSym0FlipSym1FlipSym2FlipSym3 AsTypeOfSym0 AsTypeOfSym1 AsTypeOfSym2$@#@$$@#@$$$@#@$$$$!@#@$$!@#@$$$!@#@$$$ UntilSym0 UntilSym1 UntilSym2 UntilSym3SeqSym0SeqSym1SeqSym2sSeqsUntil%$!%$ sAsTypeOfsFlip%.sConstsId%++sMapsFoldrQ$fSuppressUnusedWarnings->Let6989586621679545561Scrutinee_6989586621679545480Sym3Q$fSuppressUnusedWarnings->Let6989586621679545561Scrutinee_6989586621679545480Sym2Q$fSuppressUnusedWarnings->Let6989586621679545561Scrutinee_6989586621679545480Sym1Q$fSuppressUnusedWarnings->Let6989586621679545561Scrutinee_6989586621679545480Sym06$fSuppressUnusedWarnings->Let6989586621679545554GoSym36$fSuppressUnusedWarnings->Let6989586621679545554GoSym26$fSuppressUnusedWarnings->Let6989586621679545554GoSym16$fSuppressUnusedWarnings->Let6989586621679545554GoSym06$fSuppressUnusedWarnings->Let6989586621679545575VxSym16$fSuppressUnusedWarnings->Let6989586621679545575VxSym08$fSuppressUnusedWarnings->Lambda_6989586621679545614Sym38$fSuppressUnusedWarnings->Lambda_6989586621679545614Sym28$fSuppressUnusedWarnings->Lambda_6989586621679545614Sym18$fSuppressUnusedWarnings->Lambda_6989586621679545614Sym06$fSuppressUnusedWarnings->Let6989586621679545656GoSym36$fSuppressUnusedWarnings->Let6989586621679545656GoSym26$fSuppressUnusedWarnings->Let6989586621679545656GoSym16$fSuppressUnusedWarnings->Let6989586621679545656GoSym0$fSingI->SeqSym1!$fSuppressUnusedWarnings->SeqSym1$fSingI->SeqSym0!$fSuppressUnusedWarnings->SeqSym0$fSingI->UntilSym2#$fSuppressUnusedWarnings->UntilSym2$fSingI->UntilSym1#$fSuppressUnusedWarnings->UntilSym1$fSingI->UntilSym0#$fSuppressUnusedWarnings->UntilSym0$fSingI->$!@#@$$!$fSuppressUnusedWarnings->$!@#@$$$fSingI->$!@#@$ $fSuppressUnusedWarnings->$!@#@$$fSingI->$@#@$$ $fSuppressUnusedWarnings->$@#@$$$fSingI->$@#@$$fSuppressUnusedWarnings->$@#@$$fSingI->FlipSym2"$fSuppressUnusedWarnings->FlipSym2$fSingI->FlipSym1"$fSuppressUnusedWarnings->FlipSym1$fSingI->FlipSym0"$fSuppressUnusedWarnings->FlipSym0$fSingI->.@#@$$$!$fSuppressUnusedWarnings->.@#@$$$$fSingI->.@#@$$ $fSuppressUnusedWarnings->.@#@$$$fSingI->.@#@$$fSuppressUnusedWarnings->.@#@$$fSingI->ConstSym1#$fSuppressUnusedWarnings->ConstSym1$fSingI->ConstSym0#$fSuppressUnusedWarnings->ConstSym0$fSingI->AsTypeOfSym1&$fSuppressUnusedWarnings->AsTypeOfSym1$fSingI->AsTypeOfSym0&$fSuppressUnusedWarnings->AsTypeOfSym0$fSingI->IdSym0 $fSuppressUnusedWarnings->IdSym0$fSingI->++@#@$$$fSingI->++@#@$ $fSuppressUnusedWarnings->++@#@$!$fSuppressUnusedWarnings->++@#@$$$fSingI->MapSym1$fSingI->MapSym0!$fSuppressUnusedWarnings->MapSym0!$fSuppressUnusedWarnings->MapSym1$fSingI->FoldrSym2#$fSuppressUnusedWarnings->FoldrSym2$fSingI->FoldrSym1#$fSuppressUnusedWarnings->FoldrSym1$fSingI->FoldrSym0#$fSuppressUnusedWarnings->FoldrSym0 SMonadPlussMzerosMplus SAlternativesEmpty%<|>SMonad%>>=%>>sReturn SApplicativesPure%<*>sLiftA2%*>%<*SFunctorsFmap%<$ PMonadPlusMzeroMplus MplusSym0 MplusSym1 MplusSym2 MzeroSym0 PAlternativeEmpty<|><|>@#@$<|>@#@$$ <|>@#@$$$ EmptySym0PMonad>>=>>Return ReturnSym0 ReturnSym1>>@#@$>>@#@$$>>@#@$$$>>=@#@$>>=@#@$$ >>=@#@$$$ PApplicativePure<*>LiftA2*><*<*@#@$<*@#@$$<*@#@$$$*>@#@$*>@#@$$*>@#@$$$ LiftA2Sym0 LiftA2Sym1 LiftA2Sym2 LiftA2Sym3<*>@#@$<*>@#@$$ <*>@#@$$$PureSym0PureSym1PFunctorFmap<$<$@#@$<$@#@$$<$@#@$$$FmapSym0FmapSym1FmapSym2<**>LiftALiftA3Join=<<WhenLiftMLiftM2LiftM3LiftM4LiftM5ApGuard<**>@#@$ <**>@#@$$ <**>@#@$$$ LiftASym0 LiftASym1 LiftASym2 LiftA3Sym0 LiftA3Sym1 LiftA3Sym2 LiftA3Sym3JoinSym0JoinSym1=<<@#@$=<<@#@$$ =<<@#@$$$WhenSym0WhenSym1WhenSym2 LiftMSym0 LiftMSym1 LiftMSym2 LiftM2Sym0 LiftM2Sym1 LiftM2Sym2 LiftM2Sym3 LiftM3Sym0 LiftM3Sym1 LiftM3Sym2 LiftM3Sym3 LiftM3Sym4 LiftM4Sym0 LiftM4Sym1 LiftM4Sym2 LiftM4Sym3 LiftM4Sym4 LiftM4Sym5 LiftM5Sym0 LiftM5Sym1 LiftM5Sym2 LiftM5Sym3 LiftM5Sym4 LiftM5Sym5 LiftM5Sym6ApSym0ApSym1ApSym2 GuardSym0 GuardSym1sGuardsApsLiftM5sLiftM4sLiftM3sLiftM2sLiftMsWhen%=<<sJoinsLiftA3sLiftA%<**> SMonadFailsFail PMonadFailFailFailSym0FailSym1"$fSuppressUnusedWarnings->FailSym0$fPMonadFailMaybe6$fSuppressUnusedWarnings->Fail_6989586621679738934Sym0$fPMonadFail[]6$fSuppressUnusedWarnings->Fail_6989586621679738940Sym0$fSingI->FailSym0$fSMonadFail[]$fSMonadFailMaybe<$><&>$><$>@#@$<$>@#@$$ <$>@#@$$$<&>@#@$<&>@#@$$ <&>@#@$$$$>@#@$$>@#@$$$>@#@$$$VoidSym0VoidSym1sVoid%$>%<&>%<$>$fSingI->VoidSym0"$fSuppressUnusedWarnings->VoidSym0$fSingI->$>@#@$$!$fSuppressUnusedWarnings->$>@#@$$$fSingI->$>@#@$ $fSuppressUnusedWarnings->$>@#@$$fSingI-><$>@#@$$"$fSuppressUnusedWarnings-><$>@#@$$$fSingI-><$>@#@$!$fSuppressUnusedWarnings-><$>@#@$$fSingI-><&>@#@$$"$fSuppressUnusedWarnings-><&>@#@$$$fSingI-><&>@#@$!$fSuppressUnusedWarnings-><&>@#@$8$fSuppressUnusedWarnings->Lambda_6989586621679741094Sym38$fSuppressUnusedWarnings->Lambda_6989586621679741094Sym28$fSuppressUnusedWarnings->Lambda_6989586621679741094Sym18$fSuppressUnusedWarnings->Lambda_6989586621679741094Sym06$fSuppressUnusedWarnings->Fmap_6989586621679741085Sym16$fSuppressUnusedWarnings->Fmap_6989586621679741085Sym08$fSuppressUnusedWarnings->Lambda_6989586621679741115Sym38$fSuppressUnusedWarnings->Lambda_6989586621679741115Sym28$fSuppressUnusedWarnings->Lambda_6989586621679741115Sym18$fSuppressUnusedWarnings->Lambda_6989586621679741115Sym08$fSuppressUnusedWarnings->Lambda_6989586621679741123Sym38$fSuppressUnusedWarnings->Lambda_6989586621679741123Sym28$fSuppressUnusedWarnings->Lambda_6989586621679741123Sym1 $fSFunctor(,)8$fSuppressUnusedWarnings->Lambda_6989586621679741123Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679741106Sym1 $fPFunctor(,):$fSuppressUnusedWarnings->TFHelper_6989586621679741106Sym06$fSuppressUnusedWarnings->Fmap_6989586621679741135Sym16$fSuppressUnusedWarnings->Fmap_6989586621679741135Sym08$fSuppressUnusedWarnings->Lambda_6989586621679741155Sym28$fSuppressUnusedWarnings->Lambda_6989586621679741155Sym1$fSFunctorDown8$fSuppressUnusedWarnings->Lambda_6989586621679741155Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621679741147Sym1$fPFunctorDown:$fSuppressUnusedWarnings->TFHelper_6989586621679741147Sym0On&OnSym0OnSym1OnSym2OnSym3OnSym4&@#@$&@#@$$&@#@$$$%&sOn8$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym58$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym48$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym38$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym28$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym18$fSuppressUnusedWarnings->Lambda_6989586621679756590Sym0$fSingI->&@#@$$ $fSuppressUnusedWarnings->&@#@$$$fSingI->&@#@$$fSuppressUnusedWarnings->&@#@$$fSingI->OnSym3 $fSuppressUnusedWarnings->OnSym3$fSingI->OnSym2 $fSuppressUnusedWarnings->OnSym2$fSingI->OnSym1 $fSuppressUnusedWarnings->OnSym1$fSingI->OnSym0 $fSuppressUnusedWarnings->OnSym0SBounded sMinBound sMaxBoundPBoundedMinBoundMaxBound MaxBoundSym0 MinBoundSym0 $fSBounded()$fSBoundedOrdering$fSBoundedBool$fSBoundedIdentity$fSBounded(,,,,,,)$fSBounded(,,,,,)$fSBounded(,,,,)$fSBounded(,,,)$fSBounded(,,) $fSBounded(,) $fPBounded(,)$fPBounded(,,)$fPBounded(,,,)$fPBounded(,,,,)$fPBounded(,,,,,)$fPBounded(,,,,,,)$fPBoundedIdentity$fPBoundedBool$fPBoundedOrdering $fPBounded()SEnumsSuccsPredsToEnum sFromEnum sEnumFromTosEnumFromThenToPEnumSuccPredToEnumFromEnum EnumFromToEnumFromThenToEnumFromThenToSym0EnumFromThenToSym1EnumFromThenToSym2EnumFromThenToSym3EnumFromToSym0EnumFromToSym1EnumFromToSym2 FromEnumSym0 FromEnumSym1 ToEnumSym0 ToEnumSym1PredSym0PredSym1SuccSym0SuccSym1Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym5Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym4Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym3Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym2Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym1Q$fSuppressUnusedWarnings->Let6989586621679767172Scrutinee_6989586621679767096Sym06$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym56$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym46$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym36$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym26$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym16$fSuppressUnusedWarnings->Let6989586621679767182Y'Sym09$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym59$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym49$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym39$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym29$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym19$fSuppressUnusedWarnings->Let6989586621679767182DeltaSym09$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym69$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym59$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym49$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym39$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym29$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym19$fSuppressUnusedWarnings->Let6989586621679767182Go_dnSym0Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym5Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym4Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym3Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym2Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym1Q$fSuppressUnusedWarnings->Let6989586621679767229Scrutinee_6989586621679767086Sym06$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym56$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym46$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym36$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym26$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym16$fSuppressUnusedWarnings->Let6989586621679767239Y'Sym09$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym59$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym49$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym39$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym29$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym19$fSuppressUnusedWarnings->Let6989586621679767239DeltaSym09$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym69$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym59$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym49$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym39$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym29$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym19$fSuppressUnusedWarnings->Let6989586621679767239Go_upSym0Q$fSuppressUnusedWarnings->Let6989586621679767306Scrutinee_6989586621679767072Sym4Q$fSuppressUnusedWarnings->Let6989586621679767306Scrutinee_6989586621679767072Sym3Q$fSuppressUnusedWarnings->Let6989586621679767306Scrutinee_6989586621679767072Sym2Q$fSuppressUnusedWarnings->Let6989586621679767306Scrutinee_6989586621679767072Sym1Q$fSuppressUnusedWarnings->Let6989586621679767306Scrutinee_6989586621679767072Sym06$fSuppressUnusedWarnings->Let6989586621679767298GoSym46$fSuppressUnusedWarnings->Let6989586621679767298GoSym36$fSuppressUnusedWarnings->Let6989586621679767298GoSym26$fSuppressUnusedWarnings->Let6989586621679767298GoSym16$fSuppressUnusedWarnings->Let6989586621679767298GoSym0$fSingI->EfdtNatDnSym2'$fSuppressUnusedWarnings->EfdtNatDnSym2$fSingI->EfdtNatDnSym1'$fSuppressUnusedWarnings->EfdtNatDnSym1$fSingI->EfdtNatDnSym0'$fSuppressUnusedWarnings->EfdtNatDnSym0$fSingI->EfdtNatUpSym2'$fSuppressUnusedWarnings->EfdtNatUpSym2$fSingI->EfdtNatUpSym1'$fSuppressUnusedWarnings->EfdtNatUpSym1$fSingI->EfdtNatUpSym0'$fSuppressUnusedWarnings->EfdtNatUpSym0$fSingI->EfdtNatSym2%$fSuppressUnusedWarnings->EfdtNatSym2$fSingI->EfdtNatSym1%$fSuppressUnusedWarnings->EfdtNatSym1$fSingI->EfdtNatSym0%$fSuppressUnusedWarnings->EfdtNatSym0$fSingI->EftNatSym1$$fSuppressUnusedWarnings->EftNatSym1$fSingI->EftNatSym0$$fSuppressUnusedWarnings->EftNatSym08$fSuppressUnusedWarnings->Lambda_6989586621679767345Sym18$fSuppressUnusedWarnings->Lambda_6989586621679767345Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767376Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767376Sym1@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767376Sym2<$fSuppressUnusedWarnings->EnumFromTo_6989586621679767363Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621679767363Sym16$fSuppressUnusedWarnings->Pred_6989586621679767353Sym06$fSuppressUnusedWarnings->Succ_6989586621679767338Sym0,$fSuppressUnusedWarnings->EnumFromThenToSym0,$fSuppressUnusedWarnings->EnumFromThenToSym1,$fSuppressUnusedWarnings->EnumFromThenToSym2($fSuppressUnusedWarnings->EnumFromToSym0($fSuppressUnusedWarnings->EnumFromToSym1&$fSuppressUnusedWarnings->FromEnumSym0$$fSuppressUnusedWarnings->ToEnumSym0"$fSuppressUnusedWarnings->PredSym0"$fSuppressUnusedWarnings->SuccSym06$fSuppressUnusedWarnings->Succ_6989586621679767391Sym06$fSuppressUnusedWarnings->Pred_6989586621679767398Sym08$fSuppressUnusedWarnings->ToEnum_6989586621679767405Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621679767412Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621679767420Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621679767420Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767437Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767437Sym1 $fPEnumNat@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621679767437Sym0$fSingI->EnumFromThenToSym2$fSingI->EnumFromThenToSym1$fSingI->EnumFromThenToSym0$fSingI->EnumFromToSym1$fSingI->EnumFromToSym0$fSingI->FromEnumSym0$fSingI->ToEnumSym0$fSingI->PredSym0$fSingI->SuccSym0 $fSEnumNat $fSEnumBool8$fSuppressUnusedWarnings->ToEnum_6989586621679790676Sym0 $fPEnumBool:$fSuppressUnusedWarnings->FromEnum_6989586621679790689Sym0$fSEnumOrdering8$fSuppressUnusedWarnings->ToEnum_6989586621679790697Sym0$fPEnumOrdering:$fSuppressUnusedWarnings->FromEnum_6989586621679790713Sym0 $fSEnum()8$fSuppressUnusedWarnings->ToEnum_6989586621679790720Sym0 $fPEnum():$fSuppressUnusedWarnings->FromEnum_6989586621679790730Sym0 SSemigroup%<>sSconcat PSemigroup<>Sconcat SconcatSym0 SconcatSym1<>@#@$<>@#@$$<>@#@$$$SWrappedMonoid SWrapMonoid sUnwrapMonoidWrapMonoidSym0WrapMonoidSym1 UnwrapMonoidUnwrapMonoidSym0UnwrapMonoidSym1SLastsGetLastLastSym0LastSym1GetLast GetLastSym0 GetLastSym1SFirst sGetFirst FirstSym0 FirstSym1GetFirst GetFirstSym0 GetFirstSym1SMaxsGetMaxGetMax GetMaxSym0 GetMaxSym1SMinsGetMinGetMin GetMinSym0 GetMinSym1SProduct sGetProduct ProductSym0 ProductSym1 GetProductGetProductSym0GetProductSym1SSumsGetSumSumSym0SumSym1GetSum GetSumSym0 GetSumSym1SAnysGetAnyAnySym0AnySym1GetAny GetAnySym0 GetAnySym1SAllsGetAllAllSym0AllSym1GetAll GetAllSym0 GetAllSym1SDualsGetDualDualSym0DualSym1GetDual GetDualSym0 GetDualSym1SOption sGetOption OptionSym0 OptionSym1 GetOption GetOptionSym0 GetOptionSym1HeadLastTailInitReverse Intersperse Intercalate Subsequences PermutationsFoldl1'ScanlScanl1ScanrScanr1UnfoldrInitsTails IsPrefixOf IsSuffixOf IsInfixOfZipZip3ZipWithZipWith3UnzipUnzip3Unzip4Unzip5Unzip6Unzip7UnlinesUnwordsDelete\\DeleteByDeleteFirstsBySortByInsertByFilter ElemIndex ElemIndices FindIndex FindIndices Intersect IntersectBy TakeWhile DropWhile DropWhileEndSpanBreakTakeDropSplitAtGroupInsertSortGroupByLookup Partition Replicate Transpose!!NubNubByUnionByUnion GenericLengthHeadSym0HeadSym1TailSym0TailSym1InitSym0InitSym1 ReverseSym0 ReverseSym1IntersperseSym0IntersperseSym1IntersperseSym2IntercalateSym0IntercalateSym1IntercalateSym2SubsequencesSym0SubsequencesSym1PermutationsSym0PermutationsSym1 Foldl1'Sym0 Foldl1'Sym1 Foldl1'Sym2 ScanlSym0 ScanlSym1 ScanlSym2 ScanlSym3 Scanl1Sym0 Scanl1Sym1 Scanl1Sym2 ScanrSym0 ScanrSym1 ScanrSym2 ScanrSym3 Scanr1Sym0 Scanr1Sym1 Scanr1Sym2 UnfoldrSym0 UnfoldrSym1 UnfoldrSym2 InitsSym0 InitsSym1 TailsSym0 TailsSym1IsPrefixOfSym0IsPrefixOfSym1IsPrefixOfSym2IsSuffixOfSym0IsSuffixOfSym1IsSuffixOfSym2 IsInfixOfSym0 IsInfixOfSym1 IsInfixOfSym2ZipSym0ZipSym1ZipSym2Zip3Sym0Zip3Sym1Zip3Sym2Zip3Sym3 ZipWithSym0 ZipWithSym1 ZipWithSym2 ZipWithSym3 ZipWith3Sym0 ZipWith3Sym1 ZipWith3Sym2 ZipWith3Sym3 ZipWith3Sym4 UnzipSym0 UnzipSym1 Unzip3Sym0 Unzip3Sym1 Unzip4Sym0 Unzip4Sym1 Unzip5Sym0 Unzip5Sym1 Unzip6Sym0 Unzip6Sym1 Unzip7Sym0 Unzip7Sym1 UnlinesSym0 UnlinesSym1 UnwordsSym0 UnwordsSym1 DeleteSym0 DeleteSym1 DeleteSym2\\@#@$\\@#@$$\\@#@$$$ DeleteBySym0 DeleteBySym1 DeleteBySym2 DeleteBySym3DeleteFirstsBySym0DeleteFirstsBySym1DeleteFirstsBySym2DeleteFirstsBySym3 SortBySym0 SortBySym1 SortBySym2 InsertBySym0 InsertBySym1 InsertBySym2 InsertBySym3 FilterSym0 FilterSym1 FilterSym2 ElemIndexSym0 ElemIndexSym1 ElemIndexSym2ElemIndicesSym0ElemIndicesSym1ElemIndicesSym2 FindIndexSym0 FindIndexSym1 FindIndexSym2FindIndicesSym0FindIndicesSym1FindIndicesSym2 IntersectSym0 IntersectSym1 IntersectSym2IntersectBySym0IntersectBySym1IntersectBySym2IntersectBySym3 TakeWhileSym0 TakeWhileSym1 TakeWhileSym2 DropWhileSym0 DropWhileSym1 DropWhileSym2DropWhileEndSym0DropWhileEndSym1DropWhileEndSym2SpanSym0SpanSym1SpanSym2 BreakSym0 BreakSym1 BreakSym2TakeSym0TakeSym1TakeSym2DropSym0DropSym1DropSym2 SplitAtSym0 SplitAtSym1 SplitAtSym2 GroupSym0 GroupSym1 InsertSym0 InsertSym1 InsertSym2SortSym0SortSym1 GroupBySym0 GroupBySym1 GroupBySym2 LookupSym0 LookupSym1 LookupSym2 PartitionSym0 PartitionSym1 PartitionSym2 ReplicateSym0 ReplicateSym1 ReplicateSym2 TransposeSym0 TransposeSym1!!@#@$!!@#@$$!!@#@$$$NubSym0NubSym1 NubBySym0 NubBySym1 NubBySym2 UnionBySym0 UnionBySym1 UnionBySym2 UnionBySym3 UnionSym0 UnionSym1 UnionSym2GenericLengthSym0GenericLengthSym1sGenericLengthsUnionsUnionBysNubBysNub%!! sTranspose sReplicate sPartitionsLookupsGroupBysSortsInsertsGroupsSplitAtsDropsTakesBreaksSpan sDropWhileEnd sDropWhile sTakeWhile sIntersectBy sIntersect sFindIndices sFindIndex sElemIndices sElemIndexsFilter sInsertBysSortBysDeleteFirstsBy sDeleteBy%\\sDeletesUnwordssUnlinessUnzip7sUnzip6sUnzip5sUnzip4sUnzip3sUnzip sZipWith3sZipWithsZip3sZip sIsInfixOf sIsSuffixOf sIsPrefixOfsTailssInitssUnfoldrsScanr1sScanrsScanl1sScanlsFoldl1' sPermutations sSubsequences sIntercalate sInterspersesReversesInitsTailsLastsHead StripPrefixZip4Zip5Zip6Zip7ZipWith4ZipWith5ZipWith6ZipWith7 GenericTake GenericDropGenericSplitAt GenericIndexGenericReplicateStripPrefixSym0StripPrefixSym1StripPrefixSym2Zip4Sym0Zip4Sym1Zip4Sym2Zip4Sym3Zip4Sym4Zip5Sym0Zip5Sym1Zip5Sym2Zip5Sym3Zip5Sym4Zip5Sym5Zip6Sym0Zip6Sym1Zip6Sym2Zip6Sym3Zip6Sym4Zip6Sym5Zip6Sym6Zip7Sym0Zip7Sym1Zip7Sym2Zip7Sym3Zip7Sym4Zip7Sym5Zip7Sym6Zip7Sym7 ZipWith4Sym0 ZipWith4Sym1 ZipWith4Sym2 ZipWith4Sym3 ZipWith4Sym4 ZipWith4Sym5 ZipWith5Sym0 ZipWith5Sym1 ZipWith5Sym2 ZipWith5Sym3 ZipWith5Sym4 ZipWith5Sym5 ZipWith5Sym6 ZipWith6Sym0 ZipWith6Sym1 ZipWith6Sym2 ZipWith6Sym3 ZipWith6Sym4 ZipWith6Sym5 ZipWith6Sym6 ZipWith6Sym7 ZipWith7Sym0 ZipWith7Sym1 ZipWith7Sym2 ZipWith7Sym3 ZipWith7Sym4 ZipWith7Sym5 ZipWith7Sym6 ZipWith7Sym7 ZipWith7Sym8GenericTakeSym0GenericTakeSym1GenericTakeSym2GenericDropSym0GenericDropSym1GenericDropSym2GenericSplitAtSym0GenericSplitAtSym1GenericSplitAtSym2GenericIndexSym0GenericIndexSym1GenericIndexSym2GenericReplicateSym0GenericReplicateSym1GenericReplicateSym2SCharSymbolSSShow sShowsPrecsShow_ sShowListPShow ShowsPrecShow_ShowList ShowListSym0 ShowListSym1 ShowListSym2 Show_Sym0 Show_Sym1 ShowsPrecSym0 ShowsPrecSym1 ShowsPrecSym2 ShowsPrecSym3Shows ShowListWithShowChar ShowString ShowParen ShowSpaceShowCommaSpaceAppPrecAppPrec1 ShowsSym0 ShowsSym1 ShowsSym2ShowListWithSym0ShowListWithSym1ShowListWithSym2ShowListWithSym3 ShowCharSym0 ShowCharSym1 ShowCharSym2ShowStringSym0ShowStringSym1ShowStringSym2 ShowParenSym0 ShowParenSym1 ShowParenSym2 ShowSpaceSym0 ShowSpaceSym1ShowCommaSpaceSym0ShowCommaSpaceSym1 AppPrecSym0 AppPrec1Sym0 sAppPrec1sAppPrecsShowCommaSpace sShowSpace sShowParen sShowString sShowChar sShowListWithsShows8$fSuppressUnusedWarnings->Lambda_6989586621680294991Sym18$fSuppressUnusedWarnings->Lambda_6989586621680294991Sym09$fSuppressUnusedWarnings->Let6989586621680295042ShowlSym49$fSuppressUnusedWarnings->Let6989586621680295042ShowlSym39$fSuppressUnusedWarnings->Let6989586621680295042ShowlSym29$fSuppressUnusedWarnings->Let6989586621680295042ShowlSym19$fSuppressUnusedWarnings->Let6989586621680295042ShowlSym0$fSingI->ShowSpaceSym0'$fSuppressUnusedWarnings->ShowSpaceSym0$fSingI->ShowStringSym1($fSuppressUnusedWarnings->ShowStringSym1$fSingI->ShowStringSym0($fSuppressUnusedWarnings->ShowStringSym0$fSingI->ShowCommaSpaceSym0,$fSuppressUnusedWarnings->ShowCommaSpaceSym0$fSingI->ShowCharSym1&$fSuppressUnusedWarnings->ShowCharSym1$fSingI->ShowCharSym0&$fSuppressUnusedWarnings->ShowCharSym0$fSingI->ShowParenSym2'$fSuppressUnusedWarnings->ShowParenSym2$fSingI->ShowParenSym1'$fSuppressUnusedWarnings->ShowParenSym1$fSingI->ShowParenSym0'$fSuppressUnusedWarnings->ShowParenSym08$fSuppressUnusedWarnings->Lambda_6989586621680294971Sym38$fSuppressUnusedWarnings->Lambda_6989586621680294971Sym28$fSuppressUnusedWarnings->Lambda_6989586621680294971Sym18$fSuppressUnusedWarnings->Lambda_6989586621680294971Sym0$fSingI->Show_tupleSym1($fSuppressUnusedWarnings->Show_tupleSym1$fSingI->Show_tupleSym0($fSuppressUnusedWarnings->Show_tupleSym0$fSingI->ShowListWithSym2*$fSuppressUnusedWarnings->ShowListWithSym2$fSingI->ShowListWithSym1*$fSuppressUnusedWarnings->ShowListWithSym1$fSingI->ShowListWithSym0*$fSuppressUnusedWarnings->ShowListWithSym0:$fSuppressUnusedWarnings->ShowList_6989586621680295096Sym0:$fSuppressUnusedWarnings->ShowList_6989586621680295096Sym17$fSuppressUnusedWarnings->Show__6989586621680295088Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295074Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295074Sym1;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295074Sym2#$fSuppressUnusedWarnings->Show_Sym0'$fSuppressUnusedWarnings->ShowsPrecSym0'$fSuppressUnusedWarnings->ShowsPrecSym1'$fSuppressUnusedWarnings->ShowsPrecSym2#$fSuppressUnusedWarnings->ShowsSym0#$fSuppressUnusedWarnings->ShowsSym1&$fSuppressUnusedWarnings->ShowListSym1&$fSuppressUnusedWarnings->ShowListSym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295109Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295109Sym1 $fPShow[];$fSuppressUnusedWarnings->ShowsPrec_6989586621680295109Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295129Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295129Sym1 $fPShowSymbol;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295129Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295149Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295149Sym1 $fPShow(,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295149Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295166Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295166Sym1 $fPShow(,,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295166Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295184Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295184Sym1 $fPShow(,,,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295184Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295203Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295203Sym1 $fPShow(,,,,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295203Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295223Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295223Sym1$fPShow(,,,,,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295223Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295244Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680295244Sym1$fPShow(,,,,,,);$fSuppressUnusedWarnings->ShowsPrec_6989586621680295244Sym0$fSingI->ShowListSym1$fSingI->ShowListSym0$fSingI->Show_Sym0$fSingI->ShowsPrecSym2$fSingI->ShowsPrecSym1$fSingI->ShowsPrecSym0$fSShow(,,,,,,)$fSShow(,,,,,) $fSShow(,,,,) $fSShow(,,,) $fSShow(,,) $fSShow(,) $fSShowSymbol $fSShow[]$fSingI->ShowsSym1$fSingI->ShowsSym0show_ $fSShowNat $fPShowNat&$fSuppressUnusedWarnings->ShowsNatSym0&$fSuppressUnusedWarnings->ShowsNatSym1$fSShowOrdering $fSShowBool$fSShowNonEmpty $fSShowEither $fSShowMaybe $fSShow();$fSuppressUnusedWarnings->ShowsPrec_6989586621680312929Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680312929Sym1 $fPShow();$fSuppressUnusedWarnings->ShowsPrec_6989586621680312929Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680312963Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680312963Sym1 $fPShowMaybe;$fSuppressUnusedWarnings->ShowsPrec_6989586621680312963Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313019Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313019Sym1 $fPShowEither;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313019Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313061Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313061Sym1$fPShowNonEmpty;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313061Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313087Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313087Sym1 $fPShowBool;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313087Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313111Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313111Sym1$fPShowOrdering;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313111Sym0 $fSShowVoid;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313141Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313141Sym1 $fPShowVoid;$fSuppressUnusedWarnings->ShowsPrec_6989586621680313141Sym0SMonoidsMemptysMappendsMconcatPMonoidMemptyMappendMconcat MconcatSym0 MconcatSym1 MappendSym0 MappendSym1 MappendSym2 MemptySym09$fSuppressUnusedWarnings->Mappend_6989586621680364868Sym19$fSuppressUnusedWarnings->Mappend_6989586621680364868Sym09$fSuppressUnusedWarnings->Mconcat_6989586621680364883Sym0%$fSuppressUnusedWarnings->MappendSym0%$fSuppressUnusedWarnings->MappendSym1%$fSuppressUnusedWarnings->MconcatSym0 $fPMonoid[]8$fSuppressUnusedWarnings->Lambda_6989586621680364912Sym0 $fPMonoid-> $fPMonoid()9$fSuppressUnusedWarnings->Mconcat_6989586621680364923Sym0 $fPMonoid(,) $fPMonoid(,,)$fPMonoid(,,,)$fPMonoid(,,,,)$fPMonoidOrdering$fPMonoidMaybe$fPMonoidSymbol$fSingI->MconcatSym0$fSingI->MappendSym1$fSingI->MappendSym0$fSMonoidSymbol$fSMonoidMaybe$fSMonoidOrdering$fSMonoid(,,,,)$fSMonoid(,,,) $fSMonoid(,,) $fSMonoid(,) $fSMonoid() $fSMonoid-> $fSMonoid[]&$fSuppressUnusedWarnings->GetFirstSym0#$fSuppressUnusedWarnings->FirstSym0$fSingI->FirstSym0$fSingIFirstFirst$fSingKindFirst%$fSuppressUnusedWarnings->GetLastSym0"$fSuppressUnusedWarnings->LastSym0$fSingI->LastSym0$fSingILastLast$fSingKindLast $fShowSLast $fShowSFirst $fSEqLast $fSEqFirst $fPEqFirst $fPEqLast$fTestCoercionLastSLast$fTestEqualityLastSLast $fSDecideLast$fTestCoercionFirstSFirst$fTestEqualityFirstSFirst$fSDecideFirst $fSOrdLast $fSOrdFirst9$fSuppressUnusedWarnings->Compare_6989586621680370028Sym1 $fPOrdFirst9$fSuppressUnusedWarnings->Compare_6989586621680370028Sym09$fSuppressUnusedWarnings->Compare_6989586621680370049Sym1 $fPOrdLast9$fSuppressUnusedWarnings->Compare_6989586621680370049Sym0 $fSShowLast $fSShowFirst;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371324Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371324Sym1 $fPShowFirst;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371324Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371355Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371355Sym1 $fPShowLast;$fSuppressUnusedWarnings->ShowsPrec_6989586621680371355Sym0 $fSMonoidLast$fSFunctorLast$fSApplicativeLast$fSMonoidFirst$fSFunctorFirst$fSApplicativeFirst $fSMonoidDown$fSMonoidProduct $fSMonoidSum $fSMonoidAny $fSMonoidAll $fSMonoidDual $fPMonoidDual $fPMonoidAll $fPMonoidAny $fPMonoidSum$fPMonoidProduct $fPMonoidDown6$fSuppressUnusedWarnings->Pure_6989586621680374407Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374417Sym1$fPApplicativeFirst:$fSuppressUnusedWarnings->TFHelper_6989586621680374417Sym06$fSuppressUnusedWarnings->Fmap_6989586621680374429Sym16$fSuppressUnusedWarnings->Fmap_6989586621680374429Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374441Sym1$fPFunctorFirst:$fSuppressUnusedWarnings->TFHelper_6989586621680374441Sym0Q$fSuppressUnusedWarnings->Let6989586621680374464Scrutinee_6989586621680374268Sym2Q$fSuppressUnusedWarnings->Let6989586621680374464Scrutinee_6989586621680374268Sym1Q$fSuppressUnusedWarnings->Let6989586621680374464Scrutinee_6989586621680374268Sym08$fSuppressUnusedWarnings->Lambda_6989586621680374461Sym28$fSuppressUnusedWarnings->Lambda_6989586621680374461Sym1 $fSMonadFirst8$fSuppressUnusedWarnings->Lambda_6989586621680374461Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374453Sym1 $fPMonadFirst:$fSuppressUnusedWarnings->TFHelper_6989586621680374453Sym0$fSSemigroupFirst5$fSuppressUnusedWarnings->Let6989586621680374488ASym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374480Sym1$fPSemigroupFirst:$fSuppressUnusedWarnings->TFHelper_6989586621680374480Sym0$fPMonoidFirst6$fSuppressUnusedWarnings->Pure_6989586621680374495Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374505Sym1$fPApplicativeLast:$fSuppressUnusedWarnings->TFHelper_6989586621680374505Sym06$fSuppressUnusedWarnings->Fmap_6989586621680374517Sym16$fSuppressUnusedWarnings->Fmap_6989586621680374517Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374529Sym1$fPFunctorLast:$fSuppressUnusedWarnings->TFHelper_6989586621680374529Sym0Q$fSuppressUnusedWarnings->Let6989586621680374552Scrutinee_6989586621680374275Sym2Q$fSuppressUnusedWarnings->Let6989586621680374552Scrutinee_6989586621680374275Sym1Q$fSuppressUnusedWarnings->Let6989586621680374552Scrutinee_6989586621680374275Sym08$fSuppressUnusedWarnings->Lambda_6989586621680374549Sym28$fSuppressUnusedWarnings->Lambda_6989586621680374549Sym1 $fSMonadLast8$fSuppressUnusedWarnings->Lambda_6989586621680374549Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374541Sym1 $fPMonadLast:$fSuppressUnusedWarnings->TFHelper_6989586621680374541Sym0$fSSemigroupLast5$fSuppressUnusedWarnings->Let6989586621680374576BSym0:$fSuppressUnusedWarnings->TFHelper_6989586621680374568Sym1$fPSemigroupLast:$fSuppressUnusedWarnings->TFHelper_6989586621680374568Sym0 $fPMonoidLastEither_ Either_Sym0 Either_Sym1 Either_Sym2 Either_Sym3sEither_$fSingI->Either_Sym2%$fSuppressUnusedWarnings->Either_Sym2$fSingI->Either_Sym1%$fSuppressUnusedWarnings->Either_Sym1$fSingI->Either_Sym0%$fSuppressUnusedWarnings->Either_Sym0LeftsRightsPartitionEithersIsLeftIsRight LeftsSym0 LeftsSym1 RightsSym0 RightsSym1 IsLeftSym0 IsLeftSym1 IsRightSym0 IsRightSym1sIsRightsIsLeftsPartitionEitherssRightssLefts9$fSuppressUnusedWarnings->Let6989586621680471767RightSym29$fSuppressUnusedWarnings->Let6989586621680471767RightSym19$fSuppressUnusedWarnings->Let6989586621680471767RightSym08$fSuppressUnusedWarnings->Let6989586621680471767LeftSym28$fSuppressUnusedWarnings->Let6989586621680471767LeftSym18$fSuppressUnusedWarnings->Let6989586621680471767LeftSym0$fSingI->IsRightSym0%$fSuppressUnusedWarnings->IsRightSym0$fSingI->IsLeftSym0$$fSuppressUnusedWarnings->IsLeftSym0$fSingI->PartitionEithersSym0.$fSuppressUnusedWarnings->PartitionEithersSym0$fSingI->RightsSym0$$fSuppressUnusedWarnings->RightsSym0$fSingI->LeftsSym0#$fSuppressUnusedWarnings->LeftsSym0 $fSMonoidEndo$fSSemigroupEndo:$fSuppressUnusedWarnings->TFHelper_6989586621680480965Sym1$fPSemigroupEndo:$fSuppressUnusedWarnings->TFHelper_6989586621680480965Sym0 $fPMonoidEndo)$fSuppressUnusedWarnings->MaxInternalSym0)$fSuppressUnusedWarnings->MinInternalSym0$fSMonoidMinInternal$fSMonoidMaxInternal5$fSuppressUnusedWarnings->Let6989586621680482413NSym15$fSuppressUnusedWarnings->Let6989586621680482413NSym05$fSuppressUnusedWarnings->Let6989586621680482413MSym15$fSuppressUnusedWarnings->Let6989586621680482413MSym0Q$fSuppressUnusedWarnings->Let6989586621680482418Scrutinee_6989586621680482381Sym1Q$fSuppressUnusedWarnings->Let6989586621680482418Scrutinee_6989586621680482381Sym0$fSSemigroupMaxInternal:$fSuppressUnusedWarnings->TFHelper_6989586621680482403Sym1$fPSemigroupMaxInternal:$fSuppressUnusedWarnings->TFHelper_6989586621680482403Sym0$fPMonoidMaxInternal5$fSuppressUnusedWarnings->Let6989586621680482440NSym15$fSuppressUnusedWarnings->Let6989586621680482440NSym05$fSuppressUnusedWarnings->Let6989586621680482440MSym15$fSuppressUnusedWarnings->Let6989586621680482440MSym0Q$fSuppressUnusedWarnings->Let6989586621680482445Scrutinee_6989586621680482383Sym1Q$fSuppressUnusedWarnings->Let6989586621680482445Scrutinee_6989586621680482383Sym0$fSSemigroupMinInternal:$fSuppressUnusedWarnings->TFHelper_6989586621680482430Sym1$fPSemigroupMinInternal:$fSuppressUnusedWarnings->TFHelper_6989586621680482430Sym0$fPMonoidMinInternal SFoldablesFoldsFoldMapsFoldr'sFoldlsFoldl'sFoldr1sFoldl1sToListsNullsLengthsElemsMaximumsMinimumsSumsProduct PFoldableFoldFoldMapFoldr'FoldlFoldl'Foldr1Foldl1ToListNullLengthElemMaximumMinimumSumProduct MinimumSym0 MinimumSym1 MaximumSym0 MaximumSym1ElemSym0ElemSym1ElemSym2 LengthSym0 LengthSym1NullSym0NullSym1 ToListSym0 ToListSym1 Foldl1Sym0 Foldl1Sym1 Foldl1Sym2 Foldr1Sym0 Foldr1Sym1 Foldr1Sym2 Foldl'Sym0 Foldl'Sym1 Foldl'Sym2 Foldl'Sym3 FoldlSym0 FoldlSym1 FoldlSym2 FoldlSym3 Foldr'Sym0 Foldr'Sym1 Foldr'Sym2 Foldr'Sym3 FoldMapSym0 FoldMapSym1 FoldMapSym2FoldSym0FoldSym1FoldrMFoldlM Traverse_For_MapM_ForM_ SequenceA_ Sequence_AsumMsumConcat ConcatMapAndOrAnyAll MaximumBy MinimumByNotElemFind FoldrMSym0 FoldrMSym1 FoldrMSym2 FoldrMSym3 FoldlMSym0 FoldlMSym1 FoldlMSym2 FoldlMSym3 Traverse_Sym0 Traverse_Sym1 Traverse_Sym2For_Sym0For_Sym1For_Sym2 MapM_Sym0 MapM_Sym1 MapM_Sym2 ForM_Sym0 ForM_Sym1 ForM_Sym2SequenceA_Sym0SequenceA_Sym1 Sequence_Sym0 Sequence_Sym1AsumSym0AsumSym1MsumSym0MsumSym1 ConcatSym0 ConcatSym1 ConcatMapSym0 ConcatMapSym1 ConcatMapSym2AndSym0AndSym1OrSym0OrSym1AnySym2AllSym2 MaximumBySym0 MaximumBySym1 MaximumBySym2 MinimumBySym0 MinimumBySym1 MinimumBySym2 NotElemSym0 NotElemSym1 NotElemSym2FindSym0FindSym1FindSym2sFindsNotElem sMinimumBy sMaximumBysAllsAnysOrsAnd sConcatMapsConcatsMsumsAsum sSequence_ sSequenceA_sForM_sMapM_sFor_ sTraverse_sFoldlMsFoldrMQ$fSuppressUnusedWarnings->Let6989586621680490874Scrutinee_6989586621680490763Sym2Q$fSuppressUnusedWarnings->Let6989586621680490874Scrutinee_6989586621680490763Sym1Q$fSuppressUnusedWarnings->Let6989586621680490874Scrutinee_6989586621680490763Sym08$fSuppressUnusedWarnings->Lambda_6989586621680490871Sym28$fSuppressUnusedWarnings->Lambda_6989586621680490871Sym18$fSuppressUnusedWarnings->Lambda_6989586621680490871Sym0Q$fSuppressUnusedWarnings->Let6989586621680490916Scrutinee_6989586621680490759Sym3Q$fSuppressUnusedWarnings->Let6989586621680490916Scrutinee_6989586621680490759Sym2Q$fSuppressUnusedWarnings->Let6989586621680490916Scrutinee_6989586621680490759Sym1Q$fSuppressUnusedWarnings->Let6989586621680490916Scrutinee_6989586621680490759Sym08$fSuppressUnusedWarnings->Let6989586621680490907Min'Sym38$fSuppressUnusedWarnings->Let6989586621680490907Min'Sym28$fSuppressUnusedWarnings->Let6989586621680490907Min'Sym18$fSuppressUnusedWarnings->Let6989586621680490907Min'Sym0Q$fSuppressUnusedWarnings->Let6989586621680490941Scrutinee_6989586621680490757Sym3Q$fSuppressUnusedWarnings->Let6989586621680490941Scrutinee_6989586621680490757Sym2Q$fSuppressUnusedWarnings->Let6989586621680490941Scrutinee_6989586621680490757Sym1Q$fSuppressUnusedWarnings->Let6989586621680490941Scrutinee_6989586621680490757Sym08$fSuppressUnusedWarnings->Let6989586621680490932Max'Sym38$fSuppressUnusedWarnings->Let6989586621680490932Max'Sym28$fSuppressUnusedWarnings->Let6989586621680490932Max'Sym18$fSuppressUnusedWarnings->Let6989586621680490932Max'Sym06$fSuppressUnusedWarnings->Let6989586621680491086F'Sym56$fSuppressUnusedWarnings->Let6989586621680491086F'Sym46$fSuppressUnusedWarnings->Let6989586621680491086F'Sym36$fSuppressUnusedWarnings->Let6989586621680491086F'Sym26$fSuppressUnusedWarnings->Let6989586621680491086F'Sym16$fSuppressUnusedWarnings->Let6989586621680491086F'Sym06$fSuppressUnusedWarnings->Let6989586621680491108F'Sym56$fSuppressUnusedWarnings->Let6989586621680491108F'Sym46$fSuppressUnusedWarnings->Let6989586621680491108F'Sym36$fSuppressUnusedWarnings->Let6989586621680491108F'Sym26$fSuppressUnusedWarnings->Let6989586621680491108F'Sym16$fSuppressUnusedWarnings->Let6989586621680491108F'Sym06$fSuppressUnusedWarnings->Let6989586621680491239F'Sym56$fSuppressUnusedWarnings->Let6989586621680491239F'Sym46$fSuppressUnusedWarnings->Let6989586621680491239F'Sym36$fSuppressUnusedWarnings->Let6989586621680491239F'Sym26$fSuppressUnusedWarnings->Let6989586621680491239F'Sym16$fSuppressUnusedWarnings->Let6989586621680491239F'Sym06$fSuppressUnusedWarnings->Let6989586621680491294F'Sym56$fSuppressUnusedWarnings->Let6989586621680491294F'Sym46$fSuppressUnusedWarnings->Let6989586621680491294F'Sym36$fSuppressUnusedWarnings->Let6989586621680491294F'Sym26$fSuppressUnusedWarnings->Let6989586621680491294F'Sym16$fSuppressUnusedWarnings->Let6989586621680491294F'Sym06$fSuppressUnusedWarnings->Let6989586621680491320MfSym36$fSuppressUnusedWarnings->Let6989586621680491320MfSym26$fSuppressUnusedWarnings->Let6989586621680491320MfSym16$fSuppressUnusedWarnings->Let6989586621680491320MfSym06$fSuppressUnusedWarnings->Let6989586621680491345MfSym36$fSuppressUnusedWarnings->Let6989586621680491345MfSym26$fSuppressUnusedWarnings->Let6989586621680491345MfSym16$fSuppressUnusedWarnings->Let6989586621680491345MfSym08$fSuppressUnusedWarnings->Lambda_6989586621680491377Sym28$fSuppressUnusedWarnings->Lambda_6989586621680491377Sym18$fSuppressUnusedWarnings->Lambda_6989586621680491377Sym08$fSuppressUnusedWarnings->Lambda_6989586621680491398Sym28$fSuppressUnusedWarnings->Lambda_6989586621680491398Sym18$fSuppressUnusedWarnings->Lambda_6989586621680491398Sym09$fSuppressUnusedWarnings->Product_6989586621680491468Sym05$fSuppressUnusedWarnings->Sum_6989586621680491455Sym09$fSuppressUnusedWarnings->Minimum_6989586621680491442Sym09$fSuppressUnusedWarnings->Maximum_6989586621680491429Sym06$fSuppressUnusedWarnings->Elem_6989586621680491414Sym06$fSuppressUnusedWarnings->Elem_6989586621680491414Sym18$fSuppressUnusedWarnings->Length_6989586621680491391Sym06$fSuppressUnusedWarnings->Null_6989586621680491370Sym08$fSuppressUnusedWarnings->ToList_6989586621680491361Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680491337Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680491337Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680491312Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680491312Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680491283Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680491283Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680491283Sym27$fSuppressUnusedWarnings->Foldl_6989586621680491258Sym07$fSuppressUnusedWarnings->Foldl_6989586621680491258Sym17$fSuppressUnusedWarnings->Foldl_6989586621680491258Sym28$fSuppressUnusedWarnings->Foldr'_6989586621680491228Sym08$fSuppressUnusedWarnings->Foldr'_6989586621680491228Sym18$fSuppressUnusedWarnings->Foldr'_6989586621680491228Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491203Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491203Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491203Sym29$fSuppressUnusedWarnings->FoldMap_6989586621680491188Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680491188Sym16$fSuppressUnusedWarnings->Fold_6989586621680491178Sym0$$fSuppressUnusedWarnings->Foldl'Sym0$$fSuppressUnusedWarnings->Foldl'Sym1$$fSuppressUnusedWarnings->Foldl'Sym2#$fSuppressUnusedWarnings->FoldlSym0#$fSuppressUnusedWarnings->FoldlSym1#$fSuppressUnusedWarnings->FoldlSym2%$fSuppressUnusedWarnings->FoldMapSym0%$fSuppressUnusedWarnings->FoldMapSym1!$fSuppressUnusedWarnings->AnySym0!$fSuppressUnusedWarnings->AnySym1%$fSuppressUnusedWarnings->ProductSym0!$fSuppressUnusedWarnings->SumSym0%$fSuppressUnusedWarnings->MinimumSym0%$fSuppressUnusedWarnings->MaximumSym0"$fSuppressUnusedWarnings->ElemSym1"$fSuppressUnusedWarnings->ElemSym0%$fSuppressUnusedWarnings->NotElemSym1%$fSuppressUnusedWarnings->NotElemSym0$$fSuppressUnusedWarnings->LengthSym0"$fSuppressUnusedWarnings->NullSym0$$fSuppressUnusedWarnings->ToListSym0$$fSuppressUnusedWarnings->Foldl1Sym1$$fSuppressUnusedWarnings->Foldl1Sym0'$fSuppressUnusedWarnings->MaximumBySym1'$fSuppressUnusedWarnings->MaximumBySym0'$fSuppressUnusedWarnings->MinimumBySym1'$fSuppressUnusedWarnings->MinimumBySym0$$fSuppressUnusedWarnings->Foldr1Sym1$$fSuppressUnusedWarnings->Foldr1Sym0$$fSuppressUnusedWarnings->FoldrMSym2$$fSuppressUnusedWarnings->FoldrMSym1$$fSuppressUnusedWarnings->FoldrMSym0$$fSuppressUnusedWarnings->Foldr'Sym2$$fSuppressUnusedWarnings->Foldr'Sym1$$fSuppressUnusedWarnings->Foldr'Sym0$$fSuppressUnusedWarnings->FoldlMSym2$$fSuppressUnusedWarnings->FoldlMSym1$$fSuppressUnusedWarnings->FoldlMSym0'$fSuppressUnusedWarnings->Traverse_Sym1'$fSuppressUnusedWarnings->Traverse_Sym0"$fSuppressUnusedWarnings->For_Sym1"$fSuppressUnusedWarnings->For_Sym0#$fSuppressUnusedWarnings->MapM_Sym1#$fSuppressUnusedWarnings->MapM_Sym0#$fSuppressUnusedWarnings->ForM_Sym1#$fSuppressUnusedWarnings->ForM_Sym0($fSuppressUnusedWarnings->SequenceA_Sym0'$fSuppressUnusedWarnings->Sequence_Sym0"$fSuppressUnusedWarnings->AsumSym0"$fSuppressUnusedWarnings->MsumSym08$fSuppressUnusedWarnings->Lambda_6989586621680491012Sym28$fSuppressUnusedWarnings->Lambda_6989586621680491012Sym18$fSuppressUnusedWarnings->Lambda_6989586621680491012Sym0$$fSuppressUnusedWarnings->ConcatSym08$fSuppressUnusedWarnings->Lambda_6989586621680490999Sym38$fSuppressUnusedWarnings->Lambda_6989586621680490999Sym28$fSuppressUnusedWarnings->Lambda_6989586621680490999Sym18$fSuppressUnusedWarnings->Lambda_6989586621680490999Sym0'$fSuppressUnusedWarnings->ConcatMapSym1'$fSuppressUnusedWarnings->ConcatMapSym0Q$fSuppressUnusedWarnings->Let6989586621680491473Scrutinee_6989586621680490746Sym0Q$fSuppressUnusedWarnings->Let6989586621680491460Scrutinee_6989586621680490743Sym0Q$fSuppressUnusedWarnings->Let6989586621680491447Scrutinee_6989586621680490740Sym0Q$fSuppressUnusedWarnings->Let6989586621680491434Scrutinee_6989586621680490737Sym0Q$fSuppressUnusedWarnings->Let6989586621680491269Scrutinee_6989586621680490717Sym2Q$fSuppressUnusedWarnings->Let6989586621680491269Scrutinee_6989586621680490717Sym1Q$fSuppressUnusedWarnings->Let6989586621680491269Scrutinee_6989586621680490717Sym0Q$fSuppressUnusedWarnings->Let6989586621680491214Scrutinee_6989586621680490714Sym2Q$fSuppressUnusedWarnings->Let6989586621680491214Scrutinee_6989586621680490714Sym1Q$fSuppressUnusedWarnings->Let6989586621680491214Scrutinee_6989586621680490714Sym0!$fSuppressUnusedWarnings->AndSym0Q$fSuppressUnusedWarnings->Let6989586621680490987Scrutinee_6989586621680490749Sym0 $fSuppressUnusedWarnings->OrSym0Q$fSuppressUnusedWarnings->Let6989586621680490978Scrutinee_6989586621680490751Sym0Q$fSuppressUnusedWarnings->Let6989586621680490968Scrutinee_6989586621680490753Sym1Q$fSuppressUnusedWarnings->Let6989586621680490968Scrutinee_6989586621680490753Sym0!$fSuppressUnusedWarnings->AllSym1!$fSuppressUnusedWarnings->AllSym0Q$fSuppressUnusedWarnings->Let6989586621680490955Scrutinee_6989586621680490755Sym1Q$fSuppressUnusedWarnings->Let6989586621680490955Scrutinee_6989586621680490755Sym0"$fSuppressUnusedWarnings->FindSym1"$fSuppressUnusedWarnings->FindSym0Q$fSuppressUnusedWarnings->Let6989586621680490870Scrutinee_6989586621680490761Sym1Q$fSuppressUnusedWarnings->Let6989586621680490870Scrutinee_6989586621680490761Sym0"$fSuppressUnusedWarnings->FoldSym09$fSuppressUnusedWarnings->FoldMap_6989586621680491486Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680491486Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491503Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491503Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491503Sym07$fSuppressUnusedWarnings->Foldl_6989586621680491521Sym27$fSuppressUnusedWarnings->Foldl_6989586621680491521Sym1$fPFoldableMaybe7$fSuppressUnusedWarnings->Foldl_6989586621680491521Sym06$fSuppressUnusedWarnings->Elem_6989586621680491538Sym16$fSuppressUnusedWarnings->Elem_6989586621680491538Sym07$fSuppressUnusedWarnings->Foldl_6989586621680491555Sym27$fSuppressUnusedWarnings->Foldl_6989586621680491555Sym17$fSuppressUnusedWarnings->Foldl_6989586621680491555Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680491578Sym28$fSuppressUnusedWarnings->Foldl'_6989586621680491578Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680491578Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680491600Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680491600Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491617Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491617Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491617Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680491639Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680491639Sym08$fSuppressUnusedWarnings->Length_6989586621680491654Sym09$fSuppressUnusedWarnings->Maximum_6989586621680491663Sym09$fSuppressUnusedWarnings->Minimum_6989586621680491672Sym06$fSuppressUnusedWarnings->Null_6989586621680491681Sym09$fSuppressUnusedWarnings->Product_6989586621680491690Sym05$fSuppressUnusedWarnings->Sum_6989586621680491699Sym0 $fPFoldable[]8$fSuppressUnusedWarnings->ToList_6989586621680491708Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491719Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491719Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491719Sym07$fSuppressUnusedWarnings->Foldl_6989586621680491737Sym27$fSuppressUnusedWarnings->Foldl_6989586621680491737Sym17$fSuppressUnusedWarnings->Foldl_6989586621680491737Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680491754Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680491754Sym06$fSuppressUnusedWarnings->Let6989586621680491776GoSym56$fSuppressUnusedWarnings->Let6989586621680491776GoSym46$fSuppressUnusedWarnings->Let6989586621680491776GoSym36$fSuppressUnusedWarnings->Let6989586621680491776GoSym26$fSuppressUnusedWarnings->Let6989586621680491776GoSym16$fSuppressUnusedWarnings->Let6989586621680491776GoSym08$fSuppressUnusedWarnings->Foldr1_6989586621680491767Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680491767Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680491793Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680491793Sym06$fSuppressUnusedWarnings->Fold_6989586621680491805Sym0$fPFoldableNonEmpty8$fSuppressUnusedWarnings->ToList_6989586621680491813Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680491822Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680491822Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491835Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491835Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491835Sym08$fSuppressUnusedWarnings->Length_6989586621680491851Sym0$fPFoldableEither6$fSuppressUnusedWarnings->Null_6989586621680491857Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680491867Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680491867Sym06$fSuppressUnusedWarnings->Elem_6989586621680491879Sym16$fSuppressUnusedWarnings->Elem_6989586621680491879Sym07$fSuppressUnusedWarnings->Foldl_6989586621680491892Sym27$fSuppressUnusedWarnings->Foldl_6989586621680491892Sym17$fSuppressUnusedWarnings->Foldl_6989586621680491892Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680491909Sym28$fSuppressUnusedWarnings->Foldl'_6989586621680491909Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680491909Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680491925Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680491925Sym07$fSuppressUnusedWarnings->Foldr_6989586621680491937Sym27$fSuppressUnusedWarnings->Foldr_6989586621680491937Sym17$fSuppressUnusedWarnings->Foldr_6989586621680491937Sym08$fSuppressUnusedWarnings->Foldr'_6989586621680491954Sym28$fSuppressUnusedWarnings->Foldr'_6989586621680491954Sym18$fSuppressUnusedWarnings->Foldr'_6989586621680491954Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680491976Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680491976Sym08$fSuppressUnusedWarnings->Length_6989586621680491986Sym09$fSuppressUnusedWarnings->Maximum_6989586621680491992Sym09$fSuppressUnusedWarnings->Minimum_6989586621680491999Sym06$fSuppressUnusedWarnings->Null_6989586621680492006Sym09$fSuppressUnusedWarnings->Product_6989586621680492012Sym05$fSuppressUnusedWarnings->Sum_6989586621680492019Sym0$fPFoldableDual8$fSuppressUnusedWarnings->ToList_6989586621680492026Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680492034Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680492034Sym06$fSuppressUnusedWarnings->Elem_6989586621680492046Sym16$fSuppressUnusedWarnings->Elem_6989586621680492046Sym07$fSuppressUnusedWarnings->Foldl_6989586621680492059Sym27$fSuppressUnusedWarnings->Foldl_6989586621680492059Sym17$fSuppressUnusedWarnings->Foldl_6989586621680492059Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680492076Sym28$fSuppressUnusedWarnings->Foldl'_6989586621680492076Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680492076Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680492092Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680492092Sym07$fSuppressUnusedWarnings->Foldr_6989586621680492104Sym27$fSuppressUnusedWarnings->Foldr_6989586621680492104Sym17$fSuppressUnusedWarnings->Foldr_6989586621680492104Sym08$fSuppressUnusedWarnings->Foldr'_6989586621680492121Sym28$fSuppressUnusedWarnings->Foldr'_6989586621680492121Sym18$fSuppressUnusedWarnings->Foldr'_6989586621680492121Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680492143Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680492143Sym08$fSuppressUnusedWarnings->Length_6989586621680492153Sym09$fSuppressUnusedWarnings->Maximum_6989586621680492159Sym09$fSuppressUnusedWarnings->Minimum_6989586621680492166Sym06$fSuppressUnusedWarnings->Null_6989586621680492173Sym09$fSuppressUnusedWarnings->Product_6989586621680492179Sym05$fSuppressUnusedWarnings->Sum_6989586621680492186Sym0$fPFoldableSum8$fSuppressUnusedWarnings->ToList_6989586621680492193Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680492201Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680492201Sym06$fSuppressUnusedWarnings->Elem_6989586621680492213Sym16$fSuppressUnusedWarnings->Elem_6989586621680492213Sym07$fSuppressUnusedWarnings->Foldl_6989586621680492226Sym27$fSuppressUnusedWarnings->Foldl_6989586621680492226Sym17$fSuppressUnusedWarnings->Foldl_6989586621680492226Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680492243Sym28$fSuppressUnusedWarnings->Foldl'_6989586621680492243Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680492243Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680492259Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680492259Sym07$fSuppressUnusedWarnings->Foldr_6989586621680492271Sym27$fSuppressUnusedWarnings->Foldr_6989586621680492271Sym17$fSuppressUnusedWarnings->Foldr_6989586621680492271Sym08$fSuppressUnusedWarnings->Foldr'_6989586621680492288Sym28$fSuppressUnusedWarnings->Foldr'_6989586621680492288Sym18$fSuppressUnusedWarnings->Foldr'_6989586621680492288Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680492310Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680492310Sym08$fSuppressUnusedWarnings->Length_6989586621680492320Sym09$fSuppressUnusedWarnings->Maximum_6989586621680492326Sym09$fSuppressUnusedWarnings->Minimum_6989586621680492333Sym06$fSuppressUnusedWarnings->Null_6989586621680492340Sym09$fSuppressUnusedWarnings->Product_6989586621680492346Sym05$fSuppressUnusedWarnings->Sum_6989586621680492353Sym0$fPFoldableProduct8$fSuppressUnusedWarnings->ToList_6989586621680492360Sym0$fSingI->ProductSym0$fSingI->SumSym0$fSingI->MinimumSym0$fSingI->MaximumSym0$fSingI->ElemSym1$fSingI->ElemSym0$fSingI->LengthSym0$fSingI->NullSym0$fSingI->ToListSym0$fSingI->Foldl1Sym1$fSingI->Foldl1Sym0$fSingI->Foldr1Sym1$fSingI->Foldr1Sym0$fSingI->Foldl'Sym2$fSingI->Foldl'Sym1$fSingI->Foldl'Sym0$fSingI->FoldlSym2$fSingI->FoldlSym1$fSingI->FoldlSym0$fSingI->Foldr'Sym2$fSingI->Foldr'Sym1$fSingI->Foldr'Sym0$fSingI->FoldMapSym1$fSingI->FoldMapSym0$fSingI->FoldSym0$fSFoldableProduct$fSFoldableSum$fSFoldableDual$fSFoldableEither$fSFoldableNonEmpty $fSFoldable[]$fSFoldableMaybe$fSingI->FoldrMSym2$fSingI->FoldrMSym1$fSingI->FoldrMSym0$fSingI->FoldlMSym2$fSingI->FoldlMSym1$fSingI->FoldlMSym0$fSingI->Traverse_Sym1$fSingI->Traverse_Sym0$fSingI->For_Sym1$fSingI->For_Sym0$fSingI->MapM_Sym1$fSingI->MapM_Sym0$fSingI->ForM_Sym1$fSingI->ForM_Sym0$fSingI->SequenceA_Sym0$fSingI->Sequence_Sym0$fSingI->AsumSym0$fSingI->MsumSym0$fSingI->ConcatSym0$fSingI->ConcatMapSym1$fSingI->ConcatMapSym0$fSingI->AndSym0$fSingI->OrSym0$fSingI->AnySym1$fSingI->AnySym0$fSingI->AllSym1$fSingI->AllSym0$fSingI->MaximumBySym1$fSingI->MaximumBySym0$fSingI->MinimumBySym1$fSingI->MinimumBySym0$fSingI->NotElemSym1$fSingI->NotElemSym0$fSingI->FindSym1$fSingI->FindSym08$fSuppressUnusedWarnings->Lambda_6989586621680572229Sym38$fSuppressUnusedWarnings->Lambda_6989586621680572229Sym28$fSuppressUnusedWarnings->Lambda_6989586621680572229Sym18$fSuppressUnusedWarnings->Lambda_6989586621680572229Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680572220Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680572220Sym08$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym58$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym48$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym38$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym28$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym1$fSFoldable(,)8$fSuppressUnusedWarnings->Lambda_6989586621680572254Sym07$fSuppressUnusedWarnings->Foldr_6989586621680572242Sym27$fSuppressUnusedWarnings->Foldr_6989586621680572242Sym1$fPFoldable(,)7$fSuppressUnusedWarnings->Foldr_6989586621680572242Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680572271Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680572271Sym08$fSuppressUnusedWarnings->Lambda_6989586621680572295Sym48$fSuppressUnusedWarnings->Lambda_6989586621680572295Sym38$fSuppressUnusedWarnings->Lambda_6989586621680572295Sym28$fSuppressUnusedWarnings->Lambda_6989586621680572295Sym1$fSFoldableFirst8$fSuppressUnusedWarnings->Lambda_6989586621680572295Sym07$fSuppressUnusedWarnings->Foldr_6989586621680572284Sym27$fSuppressUnusedWarnings->Foldr_6989586621680572284Sym1$fPFoldableFirst7$fSuppressUnusedWarnings->Foldr_6989586621680572284Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680572311Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680572311Sym08$fSuppressUnusedWarnings->Lambda_6989586621680572335Sym48$fSuppressUnusedWarnings->Lambda_6989586621680572335Sym38$fSuppressUnusedWarnings->Lambda_6989586621680572335Sym28$fSuppressUnusedWarnings->Lambda_6989586621680572335Sym1$fSFoldableLast8$fSuppressUnusedWarnings->Lambda_6989586621680572335Sym07$fSuppressUnusedWarnings->Foldr_6989586621680572324Sym27$fSuppressUnusedWarnings->Foldr_6989586621680572324Sym1$fPFoldableLast7$fSuppressUnusedWarnings->Foldr_6989586621680572324Sym0$fSMonadIdentity$fSApplicativeIdentity$fSFoldableIdentity$fSShowIdentity$fSSemigroupIdentity$fSNumIdentity$fSMonoidIdentity$fSEnumIdentity6$fSuppressUnusedWarnings->Succ_6989586621680723419Sym06$fSuppressUnusedWarnings->Pred_6989586621680723426Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680723433Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680723440Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680723448Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680723448Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680723461Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680723461Sym1$fPEnumIdentity@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680723461Sym0$fPMonoidIdentity:$fSuppressUnusedWarnings->TFHelper_6989586621680723479Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680723479Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723491Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680723491Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723503Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680723503Sym08$fSuppressUnusedWarnings->Negate_6989586621680723514Sym05$fSuppressUnusedWarnings->Abs_6989586621680723521Sym08$fSuppressUnusedWarnings->Signum_6989586621680723528Sym0$fPNumIdentity=$fSuppressUnusedWarnings->FromInteger_6989586621680723535Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723543Sym1$fPSemigroupIdentity:$fSuppressUnusedWarnings->TFHelper_6989586621680723543Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680723556Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680723556Sym1$fPShowIdentity;$fSuppressUnusedWarnings->ShowsPrec_6989586621680723556Sym06$fSuppressUnusedWarnings->Fmap_6989586621680723574Sym16$fSuppressUnusedWarnings->Fmap_6989586621680723574Sym08$fSuppressUnusedWarnings->Lambda_6989586621680723594Sym28$fSuppressUnusedWarnings->Lambda_6989586621680723594Sym1$fSFunctorIdentity8$fSuppressUnusedWarnings->Lambda_6989586621680723594Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723586Sym1$fPFunctorIdentity:$fSuppressUnusedWarnings->TFHelper_6989586621680723586Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680723605Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680723605Sym06$fSuppressUnusedWarnings->Elem_6989586621680723617Sym16$fSuppressUnusedWarnings->Elem_6989586621680723617Sym07$fSuppressUnusedWarnings->Foldl_6989586621680723630Sym27$fSuppressUnusedWarnings->Foldl_6989586621680723630Sym17$fSuppressUnusedWarnings->Foldl_6989586621680723630Sym08$fSuppressUnusedWarnings->Foldl'_6989586621680723647Sym28$fSuppressUnusedWarnings->Foldl'_6989586621680723647Sym18$fSuppressUnusedWarnings->Foldl'_6989586621680723647Sym08$fSuppressUnusedWarnings->Foldl1_6989586621680723663Sym18$fSuppressUnusedWarnings->Foldl1_6989586621680723663Sym07$fSuppressUnusedWarnings->Foldr_6989586621680723675Sym27$fSuppressUnusedWarnings->Foldr_6989586621680723675Sym17$fSuppressUnusedWarnings->Foldr_6989586621680723675Sym08$fSuppressUnusedWarnings->Foldr'_6989586621680723692Sym28$fSuppressUnusedWarnings->Foldr'_6989586621680723692Sym18$fSuppressUnusedWarnings->Foldr'_6989586621680723692Sym08$fSuppressUnusedWarnings->Foldr1_6989586621680723714Sym18$fSuppressUnusedWarnings->Foldr1_6989586621680723714Sym08$fSuppressUnusedWarnings->Length_6989586621680723724Sym09$fSuppressUnusedWarnings->Maximum_6989586621680723730Sym09$fSuppressUnusedWarnings->Minimum_6989586621680723737Sym06$fSuppressUnusedWarnings->Null_6989586621680723744Sym09$fSuppressUnusedWarnings->Product_6989586621680723750Sym05$fSuppressUnusedWarnings->Sum_6989586621680723757Sym0$fPFoldableIdentity8$fSuppressUnusedWarnings->ToList_6989586621680723764Sym06$fSuppressUnusedWarnings->Pure_6989586621680723771Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723781Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680723781Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680723794Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680723794Sym1$fPApplicativeIdentity8$fSuppressUnusedWarnings->LiftA2_6989586621680723794Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680723810Sym1$fPMonadIdentity:$fSuppressUnusedWarnings->TFHelper_6989586621680723810Sym0SConst sGetConst$fSingIConstConst$fSingKindConst GetConstSym0 GetConstSym1&$fSuppressUnusedWarnings->GetConstSym0$fTestCoercionConstSConst$fTestEqualityConstSConst$fSDecideConst $fSEqConst$fSApplicativeConst $fSShowConst$fSSemigroupConst $fSNumConst$fSMonoidConst $fSEnumConst $fSOrdConst$fSBoundedConst$fPBoundedConst9$fSuppressUnusedWarnings->Compare_6989586621680760453Sym1 $fPOrdConst9$fSuppressUnusedWarnings->Compare_6989586621680760453Sym06$fSuppressUnusedWarnings->Succ_6989586621680760464Sym06$fSuppressUnusedWarnings->Pred_6989586621680760471Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680760478Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680760485Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680760493Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680760493Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680760506Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680760506Sym1 $fPEnumConst@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680760506Sym0$fPMonoidConst:$fSuppressUnusedWarnings->TFHelper_6989586621680760524Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680760524Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680760536Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680760536Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680760548Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680760548Sym08$fSuppressUnusedWarnings->Negate_6989586621680760559Sym05$fSuppressUnusedWarnings->Abs_6989586621680760566Sym08$fSuppressUnusedWarnings->Signum_6989586621680760573Sym0 $fPNumConst=$fSuppressUnusedWarnings->FromInteger_6989586621680760580Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680760588Sym1$fPSemigroupConst:$fSuppressUnusedWarnings->TFHelper_6989586621680760588Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680760601Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680760601Sym1 $fPShowConst;$fSuppressUnusedWarnings->ShowsPrec_6989586621680760601Sym08$fSuppressUnusedWarnings->Lambda_6989586621680760627Sym28$fSuppressUnusedWarnings->Lambda_6989586621680760627Sym18$fSuppressUnusedWarnings->Lambda_6989586621680760627Sym06$fSuppressUnusedWarnings->Fmap_6989586621680760619Sym16$fSuppressUnusedWarnings->Fmap_6989586621680760619Sym08$fSuppressUnusedWarnings->Lambda_6989586621680760646Sym28$fSuppressUnusedWarnings->Lambda_6989586621680760646Sym1$fSFunctorConst8$fSuppressUnusedWarnings->Lambda_6989586621680760646Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680760638Sym1$fPFunctorConst:$fSuppressUnusedWarnings->TFHelper_6989586621680760638Sym08$fSuppressUnusedWarnings->Lambda_6989586621680760665Sym28$fSuppressUnusedWarnings->Lambda_6989586621680760665Sym18$fSuppressUnusedWarnings->Lambda_6989586621680760665Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680760657Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680760657Sym08$fSuppressUnusedWarnings->Lambda_6989586621680760688Sym48$fSuppressUnusedWarnings->Lambda_6989586621680760688Sym38$fSuppressUnusedWarnings->Lambda_6989586621680760688Sym28$fSuppressUnusedWarnings->Lambda_6989586621680760688Sym1$fSFoldableConst8$fSuppressUnusedWarnings->Lambda_6989586621680760688Sym07$fSuppressUnusedWarnings->Foldr_6989586621680760677Sym27$fSuppressUnusedWarnings->Foldr_6989586621680760677Sym1$fPFoldableConst7$fSuppressUnusedWarnings->Foldr_6989586621680760677Sym06$fSuppressUnusedWarnings->Pure_6989586621680760703Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680760711Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680760711Sym18$fSuppressUnusedWarnings->LiftA2_6989586621680760711Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680760726Sym1$fPApplicativeConst:$fSuppressUnusedWarnings->TFHelper_6989586621680760726Sym0 $fPEqConst STraversable sTraverse sSequenceAsMapM sSequence PTraversableTraverse SequenceAMapMSequence SequenceSym0 SequenceSym1MapMSym0MapMSym1MapMSym2 SequenceASym0 SequenceASym1 TraverseSym0 TraverseSym1 TraverseSym2:$fSuppressUnusedWarnings->Sequence_6989586621680798757Sym06$fSuppressUnusedWarnings->MapM_6989586621680798742Sym06$fSuppressUnusedWarnings->MapM_6989586621680798742Sym1;$fSuppressUnusedWarnings->SequenceA_6989586621680798732Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680798719Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680798719Sym1'$fSuppressUnusedWarnings->SequenceASym0&$fSuppressUnusedWarnings->TraverseSym0&$fSuppressUnusedWarnings->TraverseSym1&$fSuppressUnusedWarnings->SequenceSym0"$fSuppressUnusedWarnings->MapMSym1"$fSuppressUnusedWarnings->MapMSym0$fSingI->SequenceSym0$fSingI->MapMSym1$fSingI->MapMSym0$fSingI->SequenceASym0$fSingI->TraverseSym1$fSingI->TraverseSym0ForForM MapAccumL MapAccumR FmapDefaultFoldMapDefaultForSym0ForSym1ForSym2ForMSym0ForMSym1ForMSym2 MapAccumLSym0 MapAccumLSym1 MapAccumLSym2 MapAccumLSym3 MapAccumRSym0 MapAccumRSym1 MapAccumRSym2 MapAccumRSym3FmapDefaultSym0FmapDefaultSym1FmapDefaultSym2FoldMapDefaultSym0FoldMapDefaultSym1FoldMapDefaultSym2sFoldMapDefault sFmapDefault sMapAccumR sMapAccumLsForMsFor$fSTraversableIdentity$fSTraversableLast$fSTraversableFirst$fSTraversableProduct$fSTraversableSum$fSTraversableDual$fSTraversableConst$fSTraversable(,)$fSTraversableEither$fSTraversableNonEmpty$fSTraversable[]$fSTraversableMaybe;$fSuppressUnusedWarnings->Let6989586621680804685MkConstSym2;$fSuppressUnusedWarnings->Let6989586621680804685MkConstSym1;$fSuppressUnusedWarnings->Let6989586621680804685MkConstSym0Q$fSuppressUnusedWarnings->Let6989586621680804693Scrutinee_6989586621680804321Sym1Q$fSuppressUnusedWarnings->Let6989586621680804693Scrutinee_6989586621680804321Sym0Q$fSuppressUnusedWarnings->Let6989586621680804706Scrutinee_6989586621680804318Sym1Q$fSuppressUnusedWarnings->Let6989586621680804706Scrutinee_6989586621680804318Sym0Q$fSuppressUnusedWarnings->Let6989586621680804722Scrutinee_6989586621680804314Sym2Q$fSuppressUnusedWarnings->Let6989586621680804722Scrutinee_6989586621680804314Sym1Q$fSuppressUnusedWarnings->Let6989586621680804722Scrutinee_6989586621680804314Sym0Q$fSuppressUnusedWarnings->Let6989586621680804739Scrutinee_6989586621680804310Sym2Q$fSuppressUnusedWarnings->Let6989586621680804739Scrutinee_6989586621680804310Sym1Q$fSuppressUnusedWarnings->Let6989586621680804739Scrutinee_6989586621680804310Sym0$fSingI->FoldMapDefaultSym1,$fSuppressUnusedWarnings->FoldMapDefaultSym1$fSingI->FoldMapDefaultSym0,$fSuppressUnusedWarnings->FoldMapDefaultSym0$fSingI->FmapDefaultSym1)$fSuppressUnusedWarnings->FmapDefaultSym1$fSingI->FmapDefaultSym0)$fSuppressUnusedWarnings->FmapDefaultSym0$fSingI->MapAccumRSym2'$fSuppressUnusedWarnings->MapAccumRSym2$fSingI->MapAccumRSym1'$fSuppressUnusedWarnings->MapAccumRSym1$fSingI->MapAccumRSym0'$fSuppressUnusedWarnings->MapAccumRSym0$fSingI->MapAccumLSym2'$fSuppressUnusedWarnings->MapAccumLSym2$fSingI->MapAccumLSym1'$fSuppressUnusedWarnings->MapAccumLSym1$fSingI->MapAccumLSym0'$fSuppressUnusedWarnings->MapAccumLSym0$fSingI->ForMSym1"$fSuppressUnusedWarnings->ForMSym1$fSingI->ForMSym0"$fSuppressUnusedWarnings->ForMSym0$fSingI->ForSym1!$fSuppressUnusedWarnings->ForSym1$fSingI->ForSym0!$fSuppressUnusedWarnings->ForSym0:$fSuppressUnusedWarnings->Traverse_6989586621680804769Sym1$fPTraversableMaybe:$fSuppressUnusedWarnings->Traverse_6989586621680804769Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804782Sym1$fPTraversable[]:$fSuppressUnusedWarnings->Traverse_6989586621680804782Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804796Sym1$fPTraversableNonEmpty:$fSuppressUnusedWarnings->Traverse_6989586621680804796Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804809Sym1$fPTraversableEither:$fSuppressUnusedWarnings->Traverse_6989586621680804809Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804823Sym1$fPTraversable(,):$fSuppressUnusedWarnings->Traverse_6989586621680804823Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804836Sym1$fPTraversableConst:$fSuppressUnusedWarnings->Traverse_6989586621680804836Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804848Sym1$fPTraversableDual:$fSuppressUnusedWarnings->Traverse_6989586621680804848Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804860Sym1$fPTraversableSum:$fSuppressUnusedWarnings->Traverse_6989586621680804860Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804872Sym1$fPTraversableProduct:$fSuppressUnusedWarnings->Traverse_6989586621680804872Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804884Sym1$fPTraversableFirst:$fSuppressUnusedWarnings->Traverse_6989586621680804884Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804896Sym1$fPTraversableLast:$fSuppressUnusedWarnings->Traverse_6989586621680804896Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680804908Sym1$fPTraversableIdentity:$fSuppressUnusedWarnings->Traverse_6989586621680804908Sym06$fSuppressUnusedWarnings->Let6989586621680804931S'Sym26$fSuppressUnusedWarnings->Let6989586621680804931S'Sym16$fSuppressUnusedWarnings->Let6989586621680804931S'Sym05$fSuppressUnusedWarnings->Let6989586621680804931VSym25$fSuppressUnusedWarnings->Let6989586621680804931VSym15$fSuppressUnusedWarnings->Let6989586621680804931VSym0I$fSuppressUnusedWarnings->Let6989586621680804931X_6989586621680804932Sym2I$fSuppressUnusedWarnings->Let6989586621680804931X_6989586621680804932Sym1I$fSuppressUnusedWarnings->Let6989586621680804931X_6989586621680804932Sym08$fSuppressUnusedWarnings->Lambda_6989586621680804928Sym28$fSuppressUnusedWarnings->Lambda_6989586621680804928Sym1$fSFunctorStateL8$fSuppressUnusedWarnings->Lambda_6989586621680804928Sym06$fSuppressUnusedWarnings->Fmap_6989586621680804920Sym1$fPFunctorStateL6$fSuppressUnusedWarnings->Fmap_6989586621680804920Sym08$fSuppressUnusedWarnings->Lambda_6989586621680804967Sym18$fSuppressUnusedWarnings->Lambda_6989586621680804967Sym06$fSuppressUnusedWarnings->Pure_6989586621680804962Sym07$fSuppressUnusedWarnings->Let6989586621680804987S''Sym27$fSuppressUnusedWarnings->Let6989586621680804987S''Sym17$fSuppressUnusedWarnings->Let6989586621680804987S''Sym05$fSuppressUnusedWarnings->Let6989586621680804987VSym25$fSuppressUnusedWarnings->Let6989586621680804987VSym15$fSuppressUnusedWarnings->Let6989586621680804987VSym0I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804994Sym2I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804994Sym1I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804994Sym06$fSuppressUnusedWarnings->Let6989586621680804987S'Sym26$fSuppressUnusedWarnings->Let6989586621680804987S'Sym16$fSuppressUnusedWarnings->Let6989586621680804987S'Sym05$fSuppressUnusedWarnings->Let6989586621680804987FSym25$fSuppressUnusedWarnings->Let6989586621680804987FSym15$fSuppressUnusedWarnings->Let6989586621680804987FSym0I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804988Sym2I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804988Sym1I$fSuppressUnusedWarnings->Let6989586621680804987X_6989586621680804988Sym08$fSuppressUnusedWarnings->Lambda_6989586621680804984Sym28$fSuppressUnusedWarnings->Lambda_6989586621680804984Sym18$fSuppressUnusedWarnings->Lambda_6989586621680804984Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680804976Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680804976Sym07$fSuppressUnusedWarnings->Let6989586621680805057S''Sym37$fSuppressUnusedWarnings->Let6989586621680805057S''Sym27$fSuppressUnusedWarnings->Let6989586621680805057S''Sym17$fSuppressUnusedWarnings->Let6989586621680805057S''Sym05$fSuppressUnusedWarnings->Let6989586621680805057YSym35$fSuppressUnusedWarnings->Let6989586621680805057YSym25$fSuppressUnusedWarnings->Let6989586621680805057YSym15$fSuppressUnusedWarnings->Let6989586621680805057YSym0I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805064Sym3I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805064Sym2I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805064Sym1I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805064Sym06$fSuppressUnusedWarnings->Let6989586621680805057S'Sym36$fSuppressUnusedWarnings->Let6989586621680805057S'Sym26$fSuppressUnusedWarnings->Let6989586621680805057S'Sym16$fSuppressUnusedWarnings->Let6989586621680805057S'Sym05$fSuppressUnusedWarnings->Let6989586621680805057XSym35$fSuppressUnusedWarnings->Let6989586621680805057XSym25$fSuppressUnusedWarnings->Let6989586621680805057XSym15$fSuppressUnusedWarnings->Let6989586621680805057XSym0I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805058Sym3I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805058Sym2I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805058Sym1I$fSuppressUnusedWarnings->Let6989586621680805057X_6989586621680805058Sym08$fSuppressUnusedWarnings->Lambda_6989586621680805054Sym38$fSuppressUnusedWarnings->Lambda_6989586621680805054Sym28$fSuppressUnusedWarnings->Lambda_6989586621680805054Sym1$fSApplicativeStateL8$fSuppressUnusedWarnings->Lambda_6989586621680805054Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680805043Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680805043Sym1$fPApplicativeStateL8$fSuppressUnusedWarnings->LiftA2_6989586621680805043Sym06$fSuppressUnusedWarnings->Let6989586621680805131S'Sym26$fSuppressUnusedWarnings->Let6989586621680805131S'Sym16$fSuppressUnusedWarnings->Let6989586621680805131S'Sym05$fSuppressUnusedWarnings->Let6989586621680805131VSym25$fSuppressUnusedWarnings->Let6989586621680805131VSym15$fSuppressUnusedWarnings->Let6989586621680805131VSym0I$fSuppressUnusedWarnings->Let6989586621680805131X_6989586621680805132Sym2I$fSuppressUnusedWarnings->Let6989586621680805131X_6989586621680805132Sym1I$fSuppressUnusedWarnings->Let6989586621680805131X_6989586621680805132Sym08$fSuppressUnusedWarnings->Lambda_6989586621680805128Sym28$fSuppressUnusedWarnings->Lambda_6989586621680805128Sym1$fSFunctorStateR8$fSuppressUnusedWarnings->Lambda_6989586621680805128Sym06$fSuppressUnusedWarnings->Fmap_6989586621680805120Sym1$fPFunctorStateR6$fSuppressUnusedWarnings->Fmap_6989586621680805120Sym08$fSuppressUnusedWarnings->Lambda_6989586621680805167Sym18$fSuppressUnusedWarnings->Lambda_6989586621680805167Sym06$fSuppressUnusedWarnings->Pure_6989586621680805162Sym07$fSuppressUnusedWarnings->Let6989586621680805187S''Sym27$fSuppressUnusedWarnings->Let6989586621680805187S''Sym17$fSuppressUnusedWarnings->Let6989586621680805187S''Sym05$fSuppressUnusedWarnings->Let6989586621680805187FSym25$fSuppressUnusedWarnings->Let6989586621680805187FSym15$fSuppressUnusedWarnings->Let6989586621680805187FSym0I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805194Sym2I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805194Sym1I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805194Sym06$fSuppressUnusedWarnings->Let6989586621680805187S'Sym26$fSuppressUnusedWarnings->Let6989586621680805187S'Sym16$fSuppressUnusedWarnings->Let6989586621680805187S'Sym05$fSuppressUnusedWarnings->Let6989586621680805187VSym25$fSuppressUnusedWarnings->Let6989586621680805187VSym15$fSuppressUnusedWarnings->Let6989586621680805187VSym0I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805188Sym2I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805188Sym1I$fSuppressUnusedWarnings->Let6989586621680805187X_6989586621680805188Sym08$fSuppressUnusedWarnings->Lambda_6989586621680805184Sym28$fSuppressUnusedWarnings->Lambda_6989586621680805184Sym18$fSuppressUnusedWarnings->Lambda_6989586621680805184Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680805176Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680805176Sym07$fSuppressUnusedWarnings->Let6989586621680805257S''Sym37$fSuppressUnusedWarnings->Let6989586621680805257S''Sym27$fSuppressUnusedWarnings->Let6989586621680805257S''Sym17$fSuppressUnusedWarnings->Let6989586621680805257S''Sym05$fSuppressUnusedWarnings->Let6989586621680805257XSym35$fSuppressUnusedWarnings->Let6989586621680805257XSym25$fSuppressUnusedWarnings->Let6989586621680805257XSym15$fSuppressUnusedWarnings->Let6989586621680805257XSym0I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805264Sym3I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805264Sym2I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805264Sym1I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805264Sym06$fSuppressUnusedWarnings->Let6989586621680805257S'Sym36$fSuppressUnusedWarnings->Let6989586621680805257S'Sym26$fSuppressUnusedWarnings->Let6989586621680805257S'Sym16$fSuppressUnusedWarnings->Let6989586621680805257S'Sym05$fSuppressUnusedWarnings->Let6989586621680805257YSym35$fSuppressUnusedWarnings->Let6989586621680805257YSym25$fSuppressUnusedWarnings->Let6989586621680805257YSym15$fSuppressUnusedWarnings->Let6989586621680805257YSym0I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805258Sym3I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805258Sym2I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805258Sym1I$fSuppressUnusedWarnings->Let6989586621680805257X_6989586621680805258Sym08$fSuppressUnusedWarnings->Lambda_6989586621680805254Sym38$fSuppressUnusedWarnings->Lambda_6989586621680805254Sym28$fSuppressUnusedWarnings->Lambda_6989586621680805254Sym1$fSApplicativeStateR8$fSuppressUnusedWarnings->Lambda_6989586621680805254Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680805243Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680805243Sym1$fPApplicativeStateR8$fSuppressUnusedWarnings->LiftA2_6989586621680805243Sym0SArgArgSym0ArgSym1ArgSym2!$fSuppressUnusedWarnings->ArgSym1!$fSuppressUnusedWarnings->ArgSym0$fSingI->ArgSym1$fSingI->ArgSym0 $fSingIArgArg $fSingKindArg$fShowSWrappedMonoid $fShowSMax $fShowSMin$fShowSProduct $fShowSSum $fShowSAny $fShowSAll $fShowSDual $fShowSOption$fSShowWrappedMonoid $fSShowMax $fSShowMin$fSShowProduct $fSShowSum $fSShowAny $fSShowAll $fSShowDual $fSShowOption;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917409Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917409Sym1 $fPShowOption;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917409Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917440Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917440Sym1 $fPShowDual;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917440Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917468Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917468Sym1 $fPShowAll;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917468Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917496Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917496Sym1 $fPShowAny;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917496Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917527Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917527Sym1 $fPShowSum;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917527Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917558Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917558Sym1$fPShowProduct;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917558Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917589Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917589Sym1 $fPShowMin;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917589Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917620Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917620Sym1 $fPShowMax;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917620Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917651Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917651Sym1;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917651Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917682Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917682Sym1;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917682Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917713Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917713Sym1$fPShowWrappedMonoid;$fSuppressUnusedWarnings->ShowsPrec_6989586621680917713Sym0 $fShowSArg$fSTraversableOption$fSFoldableOption$fSMonoidOption$fSSemigroupOption$fSMonadPlusOption$fSMonadOption$fSFunctorOption$fSApplicativeOption$fSEnumWrappedMonoid$fSMonoidWrappedMonoid$fSSemigroupWrappedMonoid $fSEnumLast $fSEnumFirst$fSTraversableArg $fSShowArg$fSEqArg$fSTraversableMax$fSFoldableMax $fSNumMax $fSMonoidMax$fSSemigroupMax $fSMonadMax $fSEnumMax$fSApplicativeMax$fSTraversableMin$fSFoldableMin $fSNumMin $fSMonoidMin$fSSemigroupMin $fSMonadMin $fSEnumMin$fSApplicativeMin$fPMonadPlusOption6$fSuppressUnusedWarnings->Pure_6989586621680933887Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680933897Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680933897Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680933908Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680933908Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680933919Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680933919Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680933932Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680933932Sym1$fPApplicativeMin8$fSuppressUnusedWarnings->LiftA2_6989586621680933932Sym06$fSuppressUnusedWarnings->Succ_6989586621680933947Sym06$fSuppressUnusedWarnings->Pred_6989586621680933954Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680933961Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680933970Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680933978Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680933978Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680933991Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680933991Sym1 $fPEnumMin@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680933991Sym06$fSuppressUnusedWarnings->Fmap_6989586621680934007Sym16$fSuppressUnusedWarnings->Fmap_6989586621680934007Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934027Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934027Sym1 $fSFunctorMin8$fSuppressUnusedWarnings->Lambda_6989586621680934027Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934019Sym1 $fPFunctorMin:$fSuppressUnusedWarnings->TFHelper_6989586621680934019Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934038Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934038Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934054Sym1 $fPMonadMin:$fSuppressUnusedWarnings->TFHelper_6989586621680934054Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934066Sym1$fPSemigroupMin:$fSuppressUnusedWarnings->TFHelper_6989586621680934066Sym0 $fPMonoidMin:$fSuppressUnusedWarnings->TFHelper_6989586621680934080Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934080Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934092Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934092Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934104Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934104Sym08$fSuppressUnusedWarnings->Negate_6989586621680934115Sym05$fSuppressUnusedWarnings->Abs_6989586621680934122Sym08$fSuppressUnusedWarnings->Signum_6989586621680934129Sym0 $fPNumMin=$fSuppressUnusedWarnings->FromInteger_6989586621680934136Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680934146Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680934146Sym07$fSuppressUnusedWarnings->Foldr_6989586621680934159Sym27$fSuppressUnusedWarnings->Foldr_6989586621680934159Sym1$fPFoldableMin7$fSuppressUnusedWarnings->Foldr_6989586621680934159Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680934175Sym1$fPTraversableMin:$fSuppressUnusedWarnings->Traverse_6989586621680934175Sym06$fSuppressUnusedWarnings->Pure_6989586621680934186Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934196Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934196Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934207Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934207Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934218Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934218Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680934231Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680934231Sym1$fPApplicativeMax8$fSuppressUnusedWarnings->LiftA2_6989586621680934231Sym06$fSuppressUnusedWarnings->Succ_6989586621680934246Sym06$fSuppressUnusedWarnings->Pred_6989586621680934253Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680934260Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680934269Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680934277Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680934277Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934290Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934290Sym1 $fPEnumMax@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934290Sym06$fSuppressUnusedWarnings->Fmap_6989586621680934306Sym16$fSuppressUnusedWarnings->Fmap_6989586621680934306Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934326Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934326Sym1 $fSFunctorMax8$fSuppressUnusedWarnings->Lambda_6989586621680934326Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934318Sym1 $fPFunctorMax:$fSuppressUnusedWarnings->TFHelper_6989586621680934318Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934337Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934337Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934353Sym1 $fPMonadMax:$fSuppressUnusedWarnings->TFHelper_6989586621680934353Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934365Sym1$fPSemigroupMax:$fSuppressUnusedWarnings->TFHelper_6989586621680934365Sym0 $fPMonoidMax:$fSuppressUnusedWarnings->TFHelper_6989586621680934379Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934379Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934391Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934391Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934403Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934403Sym08$fSuppressUnusedWarnings->Negate_6989586621680934414Sym05$fSuppressUnusedWarnings->Abs_6989586621680934421Sym08$fSuppressUnusedWarnings->Signum_6989586621680934428Sym0 $fPNumMax=$fSuppressUnusedWarnings->FromInteger_6989586621680934435Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680934445Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680934445Sym07$fSuppressUnusedWarnings->Foldr_6989586621680934458Sym27$fSuppressUnusedWarnings->Foldr_6989586621680934458Sym1$fPFoldableMax7$fSuppressUnusedWarnings->Foldr_6989586621680934458Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680934474Sym1$fPTraversableMax:$fSuppressUnusedWarnings->Traverse_6989586621680934474Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934486Sym1$fPEqArg:$fSuppressUnusedWarnings->TFHelper_6989586621680934486Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934507Sym38$fSuppressUnusedWarnings->Lambda_6989586621680934507Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934507Sym18$fSuppressUnusedWarnings->Lambda_6989586621680934507Sym06$fSuppressUnusedWarnings->Fmap_6989586621680934498Sym16$fSuppressUnusedWarnings->Fmap_6989586621680934498Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934528Sym38$fSuppressUnusedWarnings->Lambda_6989586621680934528Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934528Sym18$fSuppressUnusedWarnings->Lambda_6989586621680934528Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934536Sym38$fSuppressUnusedWarnings->Lambda_6989586621680934536Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934536Sym1 $fSFunctorArg8$fSuppressUnusedWarnings->Lambda_6989586621680934536Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934519Sym1 $fPFunctorArg:$fSuppressUnusedWarnings->TFHelper_6989586621680934519Sym09$fSuppressUnusedWarnings->Compare_6989586621680934548Sym19$fSuppressUnusedWarnings->Compare_6989586621680934548Sym05$fSuppressUnusedWarnings->Let6989586621680934574YSym55$fSuppressUnusedWarnings->Let6989586621680934574YSym45$fSuppressUnusedWarnings->Let6989586621680934574YSym35$fSuppressUnusedWarnings->Let6989586621680934574YSym25$fSuppressUnusedWarnings->Let6989586621680934574YSym15$fSuppressUnusedWarnings->Let6989586621680934574YSym05$fSuppressUnusedWarnings->Let6989586621680934574XSym55$fSuppressUnusedWarnings->Let6989586621680934574XSym45$fSuppressUnusedWarnings->Let6989586621680934574XSym35$fSuppressUnusedWarnings->Let6989586621680934574XSym25$fSuppressUnusedWarnings->Let6989586621680934574XSym15$fSuppressUnusedWarnings->Let6989586621680934574XSym05$fSuppressUnusedWarnings->Min_6989586621680934560Sym15$fSuppressUnusedWarnings->Min_6989586621680934560Sym05$fSuppressUnusedWarnings->Let6989586621680934609YSym55$fSuppressUnusedWarnings->Let6989586621680934609YSym45$fSuppressUnusedWarnings->Let6989586621680934609YSym35$fSuppressUnusedWarnings->Let6989586621680934609YSym25$fSuppressUnusedWarnings->Let6989586621680934609YSym15$fSuppressUnusedWarnings->Let6989586621680934609YSym05$fSuppressUnusedWarnings->Let6989586621680934609XSym55$fSuppressUnusedWarnings->Let6989586621680934609XSym45$fSuppressUnusedWarnings->Let6989586621680934609XSym35$fSuppressUnusedWarnings->Let6989586621680934609XSym25$fSuppressUnusedWarnings->Let6989586621680934609XSym15$fSuppressUnusedWarnings->Let6989586621680934609XSym0 $fSOrdArg5$fSuppressUnusedWarnings->Max_6989586621680934595Sym1 $fPOrdArg5$fSuppressUnusedWarnings->Max_6989586621680934595Sym0;$fSuppressUnusedWarnings->ShowsPrec_6989586621680934631Sym2;$fSuppressUnusedWarnings->ShowsPrec_6989586621680934631Sym1 $fPShowArg;$fSuppressUnusedWarnings->ShowsPrec_6989586621680934631Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934659Sym38$fSuppressUnusedWarnings->Lambda_6989586621680934659Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934659Sym18$fSuppressUnusedWarnings->Lambda_6989586621680934659Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680934650Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680934650Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym58$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym48$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym38$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym1$fSFoldableArg8$fSuppressUnusedWarnings->Lambda_6989586621680934684Sym07$fSuppressUnusedWarnings->Foldr_6989586621680934672Sym27$fSuppressUnusedWarnings->Foldr_6989586621680934672Sym1$fPFoldableArg7$fSuppressUnusedWarnings->Foldr_6989586621680934672Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680934701Sym1$fPTraversableArg:$fSuppressUnusedWarnings->Traverse_6989586621680934701Sym06$fSuppressUnusedWarnings->Pure_6989586621680934713Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934721Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934721Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934732Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934732Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934743Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934743Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680934756Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680934756Sym18$fSuppressUnusedWarnings->LiftA2_6989586621680934756Sym06$fSuppressUnusedWarnings->Succ_6989586621680934771Sym06$fSuppressUnusedWarnings->Pred_6989586621680934778Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680934785Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680934794Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680934802Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680934802Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934815Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934815Sym1 $fPEnumFirst@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680934815Sym06$fSuppressUnusedWarnings->Fmap_6989586621680934831Sym16$fSuppressUnusedWarnings->Fmap_6989586621680934831Sym08$fSuppressUnusedWarnings->Lambda_6989586621680934851Sym28$fSuppressUnusedWarnings->Lambda_6989586621680934851Sym18$fSuppressUnusedWarnings->Lambda_6989586621680934851Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934843Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934843Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934862Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934862Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934878Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934878Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934890Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934890Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680934901Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680934901Sym07$fSuppressUnusedWarnings->Foldr_6989586621680934914Sym27$fSuppressUnusedWarnings->Foldr_6989586621680934914Sym17$fSuppressUnusedWarnings->Foldr_6989586621680934914Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680934930Sym1:$fSuppressUnusedWarnings->Traverse_6989586621680934930Sym06$fSuppressUnusedWarnings->Pure_6989586621680934941Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934949Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934949Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934960Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934960Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680934971Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680934971Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680934984Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680934984Sym18$fSuppressUnusedWarnings->LiftA2_6989586621680934984Sym06$fSuppressUnusedWarnings->Succ_6989586621680934999Sym06$fSuppressUnusedWarnings->Pred_6989586621680935006Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680935013Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680935022Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680935030Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680935030Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935043Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935043Sym1 $fPEnumLast@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935043Sym06$fSuppressUnusedWarnings->Fmap_6989586621680935059Sym16$fSuppressUnusedWarnings->Fmap_6989586621680935059Sym08$fSuppressUnusedWarnings->Lambda_6989586621680935079Sym28$fSuppressUnusedWarnings->Lambda_6989586621680935079Sym18$fSuppressUnusedWarnings->Lambda_6989586621680935079Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935071Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935071Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935090Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935090Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935106Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935106Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935118Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935118Sym09$fSuppressUnusedWarnings->FoldMap_6989586621680935129Sym19$fSuppressUnusedWarnings->FoldMap_6989586621680935129Sym07$fSuppressUnusedWarnings->Foldr_6989586621680935142Sym27$fSuppressUnusedWarnings->Foldr_6989586621680935142Sym17$fSuppressUnusedWarnings->Foldr_6989586621680935142Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680935158Sym1:$fSuppressUnusedWarnings->Traverse_6989586621680935158Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935170Sym1$fPSemigroupWrappedMonoid:$fSuppressUnusedWarnings->TFHelper_6989586621680935170Sym0$fPMonoidWrappedMonoid6$fSuppressUnusedWarnings->Succ_6989586621680935183Sym06$fSuppressUnusedWarnings->Pred_6989586621680935190Sym08$fSuppressUnusedWarnings->ToEnum_6989586621680935197Sym0:$fSuppressUnusedWarnings->FromEnum_6989586621680935206Sym0<$fSuppressUnusedWarnings->EnumFromTo_6989586621680935214Sym1<$fSuppressUnusedWarnings->EnumFromTo_6989586621680935214Sym0@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935227Sym2@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935227Sym1$fPEnumWrappedMonoid@$fSuppressUnusedWarnings->EnumFromThenTo_6989586621680935227Sym0$fSAlternativeOption5$fSuppressUnusedWarnings->Let6989586621680935253ASym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935245Sym1$fPAlternativeOption:$fSuppressUnusedWarnings->TFHelper_6989586621680935245Sym06$fSuppressUnusedWarnings->Pure_6989586621680935258Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935266Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935266Sym08$fSuppressUnusedWarnings->LiftA2_6989586621680935279Sym28$fSuppressUnusedWarnings->LiftA2_6989586621680935279Sym18$fSuppressUnusedWarnings->LiftA2_6989586621680935279Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935295Sym1$fPApplicativeOption:$fSuppressUnusedWarnings->TFHelper_6989586621680935295Sym06$fSuppressUnusedWarnings->Fmap_6989586621680935306Sym16$fSuppressUnusedWarnings->Fmap_6989586621680935306Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935318Sym1$fPFunctorOption:$fSuppressUnusedWarnings->TFHelper_6989586621680935318Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935330Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621680935330Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935342Sym1$fPMonadOption:$fSuppressUnusedWarnings->TFHelper_6989586621680935342Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621680935358Sym1$fPSemigroupOption:$fSuppressUnusedWarnings->TFHelper_6989586621680935358Sym0$fPMonoidOption9$fSuppressUnusedWarnings->FoldMap_6989586621680935372Sym1$fPFoldableOption9$fSuppressUnusedWarnings->FoldMap_6989586621680935372Sym0:$fSuppressUnusedWarnings->Traverse_6989586621680935384Sym1$fPTraversableOption:$fSuppressUnusedWarnings->Traverse_6989586621680935384Sym0Option_sOption_$fSingI->Option_Sym2%$fSuppressUnusedWarnings->Option_Sym2$fSingI->Option_Sym1%$fSuppressUnusedWarnings->Option_Sym1$fSingI->Option_Sym0%$fSuppressUnusedWarnings->Option_Sym0 SMonadZipsMzip sMzipWithsMunzip PMonadZipMzipMzipWithMunzip MunzipSym0 MunzipSym1 MzipWithSym0 MzipWithSym1 MzipWithSym2 MzipWithSym3MzipSym0MzipSym1MzipSym28$fSuppressUnusedWarnings->Munzip_6989586621681131541Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131526Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131526Sym1:$fSuppressUnusedWarnings->MzipWith_6989586621681131526Sym26$fSuppressUnusedWarnings->Mzip_6989586621681131509Sym06$fSuppressUnusedWarnings->Mzip_6989586621681131509Sym1&$fSuppressUnusedWarnings->MzipWithSym0&$fSuppressUnusedWarnings->MzipWithSym1&$fSuppressUnusedWarnings->MzipWithSym2"$fSuppressUnusedWarnings->MzipSym0"$fSuppressUnusedWarnings->MzipSym1$$fSuppressUnusedWarnings->MunzipSym06$fSuppressUnusedWarnings->Mzip_6989586621681131584Sym16$fSuppressUnusedWarnings->Mzip_6989586621681131584Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131601Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131601Sym1:$fSuppressUnusedWarnings->MzipWith_6989586621681131601Sym0 $fPMonadZip[]8$fSuppressUnusedWarnings->Munzip_6989586621681131622Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131633Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131633Sym1:$fSuppressUnusedWarnings->MzipWith_6989586621681131633Sym0$fPMonadZipIdentity8$fSuppressUnusedWarnings->Munzip_6989586621681131654Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131664Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131664Sym1$fPMonadZipDual:$fSuppressUnusedWarnings->MzipWith_6989586621681131664Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131687Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131687Sym1$fPMonadZipSum:$fSuppressUnusedWarnings->MzipWith_6989586621681131687Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131710Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131710Sym1$fPMonadZipProduct:$fSuppressUnusedWarnings->MzipWith_6989586621681131710Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131733Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131733Sym1$fPMonadZipMaybe:$fSuppressUnusedWarnings->MzipWith_6989586621681131733Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131756Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131756Sym1$fPMonadZipFirst:$fSuppressUnusedWarnings->MzipWith_6989586621681131756Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681131779Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681131779Sym1$fPMonadZipLast:$fSuppressUnusedWarnings->MzipWith_6989586621681131779Sym0$fSingI->MunzipSym0$fSingI->MzipWithSym2$fSingI->MzipWithSym1$fSingI->MzipWithSym0$fSingI->MzipSym1$fSingI->MzipSym0$fSMonadZipLast$fSMonadZipFirst$fSMonadZipMaybe$fSMonadZipProduct$fSMonadZipSum$fSMonadZipDual$fSMonadZipIdentity $fSMonadZip[]XorUnfold NonEmpty_Uncons<|ConsFromList GroupWith GroupAllWithGroup1GroupBy1 GroupWith1 GroupAllWith1SortWithXorSym0XorSym1 UnfoldSym0 UnfoldSym1 NonEmpty_Sym0 NonEmpty_Sym1 UnconsSym0 UnconsSym1<|@#@$<|@#@$$<|@#@$$$ConsSym0ConsSym1ConsSym2 FromListSym0 FromListSym1 GroupWithSym0 GroupWithSym1 GroupWithSym2GroupAllWithSym0GroupAllWithSym1GroupAllWithSym2 Group1Sym0 Group1Sym1 GroupBy1Sym0 GroupBy1Sym1 GroupBy1Sym2GroupWith1Sym0GroupWith1Sym1GroupWith1Sym2GroupAllWith1Sym0GroupAllWith1Sym1GroupAllWith1Sym2 SortWithSym0 SortWithSym1 SortWithSym2 sSortWithsGroupAllWith1 sGroupWith1 sGroupBy1sGroup1 sGroupAllWith sGroupWith sFromListsCons%<|sUncons sNonEmpty_sUnfoldsXor8$fSuppressUnusedWarnings->Lambda_6989586621681164792Sym38$fSuppressUnusedWarnings->Lambda_6989586621681164792Sym28$fSuppressUnusedWarnings->Lambda_6989586621681164792Sym18$fSuppressUnusedWarnings->Lambda_6989586621681164792Sym06$fSuppressUnusedWarnings->Let6989586621681164810AsSym26$fSuppressUnusedWarnings->Let6989586621681164810AsSym16$fSuppressUnusedWarnings->Let6989586621681164810AsSym06$fSuppressUnusedWarnings->Let6989586621681164810BsSym26$fSuppressUnusedWarnings->Let6989586621681164810BsSym16$fSuppressUnusedWarnings->Let6989586621681164810BsSym0I$fSuppressUnusedWarnings->Let6989586621681164810X_6989586621681164811Sym2I$fSuppressUnusedWarnings->Let6989586621681164810X_6989586621681164811Sym1I$fSuppressUnusedWarnings->Let6989586621681164810X_6989586621681164811Sym06$fSuppressUnusedWarnings->Let6989586621681164902YsSym26$fSuppressUnusedWarnings->Let6989586621681164902YsSym16$fSuppressUnusedWarnings->Let6989586621681164902YsSym06$fSuppressUnusedWarnings->Let6989586621681164902ZsSym26$fSuppressUnusedWarnings->Let6989586621681164902ZsSym16$fSuppressUnusedWarnings->Let6989586621681164902ZsSym0I$fSuppressUnusedWarnings->Let6989586621681164902X_6989586621681164903Sym2I$fSuppressUnusedWarnings->Let6989586621681164902X_6989586621681164903Sym1I$fSuppressUnusedWarnings->Let6989586621681164902X_6989586621681164903Sym06$fSuppressUnusedWarnings->Let6989586621681164965YsSym46$fSuppressUnusedWarnings->Let6989586621681164965YsSym36$fSuppressUnusedWarnings->Let6989586621681164965YsSym26$fSuppressUnusedWarnings->Let6989586621681164965YsSym16$fSuppressUnusedWarnings->Let6989586621681164965YsSym06$fSuppressUnusedWarnings->Let6989586621681164965ZsSym46$fSuppressUnusedWarnings->Let6989586621681164965ZsSym36$fSuppressUnusedWarnings->Let6989586621681164965ZsSym26$fSuppressUnusedWarnings->Let6989586621681164965ZsSym16$fSuppressUnusedWarnings->Let6989586621681164965ZsSym0I$fSuppressUnusedWarnings->Let6989586621681164965X_6989586621681164966Sym4I$fSuppressUnusedWarnings->Let6989586621681164965X_6989586621681164966Sym3I$fSuppressUnusedWarnings->Let6989586621681164965X_6989586621681164966Sym2I$fSuppressUnusedWarnings->Let6989586621681164965X_6989586621681164966Sym1I$fSuppressUnusedWarnings->Let6989586621681164965X_6989586621681164966Sym0Q$fSuppressUnusedWarnings->Let6989586621681165212Scrutinee_6989586621681163725Sym2Q$fSuppressUnusedWarnings->Let6989586621681165212Scrutinee_6989586621681163725Sym1Q$fSuppressUnusedWarnings->Let6989586621681165212Scrutinee_6989586621681163725Sym06$fSuppressUnusedWarnings->Let6989586621681165206GoSym26$fSuppressUnusedWarnings->Let6989586621681165206GoSym16$fSuppressUnusedWarnings->Let6989586621681165206GoSym0Q$fSuppressUnusedWarnings->Let6989586621681165221Scrutinee_6989586621681163721Sym1Q$fSuppressUnusedWarnings->Let6989586621681165221Scrutinee_6989586621681163721Sym0Q$fSuppressUnusedWarnings->Let6989586621681165243Scrutinee_6989586621681163711Sym1Q$fSuppressUnusedWarnings->Let6989586621681165243Scrutinee_6989586621681163711Sym08$fSuppressUnusedWarnings->Let6989586621681165256Xor'Sym38$fSuppressUnusedWarnings->Let6989586621681165256Xor'Sym28$fSuppressUnusedWarnings->Let6989586621681165256Xor'Sym18$fSuppressUnusedWarnings->Let6989586621681165256Xor'Sym0$fSingI->NubBySym1#$fSuppressUnusedWarnings->NubBySym1$fSingI->NubBySym0#$fSuppressUnusedWarnings->NubBySym0$fSingI->NubSym0!$fSuppressUnusedWarnings->NubSym0$fSingI->UnzipSym0#$fSuppressUnusedWarnings->UnzipSym0$fSingI->ZipWithSym2%$fSuppressUnusedWarnings->ZipWithSym2$fSingI->ZipWithSym1%$fSuppressUnusedWarnings->ZipWithSym1$fSingI->ZipWithSym0%$fSuppressUnusedWarnings->ZipWithSym0$fSingI->ZipSym1!$fSuppressUnusedWarnings->ZipSym1$fSMonadZipNonEmpty$fSingI->ZipSym0!$fSuppressUnusedWarnings->ZipSym0$fSingI->!!@#@$$!$fSuppressUnusedWarnings->!!@#@$$$fSingI->!!@#@$ $fSuppressUnusedWarnings->!!@#@$$fSingI->IsPrefixOfSym1($fSuppressUnusedWarnings->IsPrefixOfSym1$fSingI->IsPrefixOfSym0($fSuppressUnusedWarnings->IsPrefixOfSym0$fSingI->GroupBySym1$fSingI->GroupBySym0%$fSuppressUnusedWarnings->GroupBySym0%$fSuppressUnusedWarnings->GroupBySym16$fSuppressUnusedWarnings->Let6989586621681164955GoSym26$fSuppressUnusedWarnings->Let6989586621681164955GoSym3$fSingI->GroupWithSym1'$fSuppressUnusedWarnings->GroupWithSym1$fSingI->GroupWithSym0'$fSuppressUnusedWarnings->GroupWithSym0$fSingI->GroupAllWithSym1*$fSuppressUnusedWarnings->GroupAllWithSym1$fSingI->GroupAllWithSym0*$fSuppressUnusedWarnings->GroupAllWithSym0$fSingI->GroupBy1Sym1&$fSuppressUnusedWarnings->GroupBy1Sym1$fSingI->GroupBy1Sym0&$fSuppressUnusedWarnings->GroupBy1Sym0$fSingI->Group1Sym0$$fSuppressUnusedWarnings->Group1Sym0$fSingI->GroupWith1Sym1($fSuppressUnusedWarnings->GroupWith1Sym1$fSingI->GroupWith1Sym0($fSuppressUnusedWarnings->GroupWith1Sym06$fSuppressUnusedWarnings->Let6989586621681164955GoSym16$fSuppressUnusedWarnings->Let6989586621681164955GoSym0$fSingI->GroupSym0#$fSuppressUnusedWarnings->GroupSym0$fSingI->IntersperseSym1)$fSuppressUnusedWarnings->IntersperseSym1$fSingI->IntersperseSym0)$fSuppressUnusedWarnings->IntersperseSym0$fSingI->TakeSym1"$fSuppressUnusedWarnings->TakeSym1$fSingI->TakeSym0"$fSuppressUnusedWarnings->TakeSym0$fSingI->DropSym1"$fSuppressUnusedWarnings->DropSym1$fSingI->DropSym0"$fSuppressUnusedWarnings->DropSym0$fSingI->SplitAtSym1%$fSuppressUnusedWarnings->SplitAtSym1$fSingI->SplitAtSym0%$fSuppressUnusedWarnings->SplitAtSym0$fSingI->TakeWhileSym1'$fSuppressUnusedWarnings->TakeWhileSym1$fSingI->TakeWhileSym0'$fSuppressUnusedWarnings->TakeWhileSym0$fSingI->DropWhileSym1'$fSuppressUnusedWarnings->DropWhileSym1$fSingI->DropWhileSym0'$fSuppressUnusedWarnings->DropWhileSym0$fSingI->SpanSym1"$fSuppressUnusedWarnings->SpanSym1$fSingI->SpanSym0"$fSuppressUnusedWarnings->SpanSym0$fSingI->BreakSym1#$fSuppressUnusedWarnings->BreakSym1$fSingI->BreakSym0#$fSuppressUnusedWarnings->BreakSym0$fSingI->FilterSym1$$fSuppressUnusedWarnings->FilterSym1$fSingI->FilterSym0$$fSuppressUnusedWarnings->FilterSym0$fSingI->PartitionSym1'$fSuppressUnusedWarnings->PartitionSym1$fSingI->PartitionSym0'$fSuppressUnusedWarnings->PartitionSym0$fSingI->FromListSym0&$fSuppressUnusedWarnings->FromListSym0$fSingI->LiftSym1"$fSuppressUnusedWarnings->LiftSym1$fSingI->LiftSym0"$fSuppressUnusedWarnings->LiftSym0$fSingI->ReverseSym0%$fSuppressUnusedWarnings->ReverseSym0$fSingI->SortBySym1$$fSuppressUnusedWarnings->SortBySym1$fSingI->SortBySym0$$fSuppressUnusedWarnings->SortBySym0$fSingI->SortWithSym1&$fSuppressUnusedWarnings->SortWithSym1$fSingI->SortWithSym0&$fSuppressUnusedWarnings->SortWithSym0$fSingI->GroupAllWith1Sym1+$fSuppressUnusedWarnings->GroupAllWith1Sym1$fSingI->GroupAllWith1Sym0+$fSuppressUnusedWarnings->GroupAllWith1Sym0$fSingI->InitsSym0#$fSuppressUnusedWarnings->InitsSym0$fSingI->TailsSym0#$fSuppressUnusedWarnings->TailsSym0$fSingI->InsertSym1$$fSuppressUnusedWarnings->InsertSym1$fSingI->InsertSym0$$fSuppressUnusedWarnings->InsertSym0$fSingI->ScanlSym2#$fSuppressUnusedWarnings->ScanlSym2$fSingI->ScanlSym1#$fSuppressUnusedWarnings->ScanlSym1$fSingI->ScanlSym0#$fSuppressUnusedWarnings->ScanlSym0$fSingI->ScanrSym2#$fSuppressUnusedWarnings->ScanrSym2$fSingI->ScanrSym1#$fSuppressUnusedWarnings->ScanrSym1$fSingI->ScanrSym0#$fSuppressUnusedWarnings->ScanrSym0$fSingI->Scanl1Sym1$$fSuppressUnusedWarnings->Scanl1Sym1$fSingI->Scanl1Sym0$$fSuppressUnusedWarnings->Scanl1Sym0$fSingI->Scanr1Sym1$$fSuppressUnusedWarnings->Scanr1Sym1$fSingI->Scanr1Sym0$$fSuppressUnusedWarnings->Scanr1Sym0$fSingI->SortSym0"$fSuppressUnusedWarnings->SortSym0$fSingI-><|@#@$$!$fSuppressUnusedWarnings-><|@#@$$$fSingI-><|@#@$ $fSuppressUnusedWarnings-><|@#@$$fSingI->ConsSym1"$fSuppressUnusedWarnings->ConsSym1$fSingI->ConsSym0"$fSuppressUnusedWarnings->ConsSym0$fSingI->InitSym0"$fSuppressUnusedWarnings->InitSym0$fSingI->TailSym0"$fSuppressUnusedWarnings->TailSym0$fSingI->HeadSym0"$fSuppressUnusedWarnings->HeadSym0$fSingI->UnfoldrSym1%$fSuppressUnusedWarnings->UnfoldrSym1$fSingI->UnfoldrSym0%$fSuppressUnusedWarnings->UnfoldrSym0$fSingI->NonEmpty_Sym0'$fSuppressUnusedWarnings->NonEmpty_Sym0$fSingI->UnconsSym0$$fSuppressUnusedWarnings->UnconsSym0$fSingI->UnfoldSym1$fSingI->UnfoldSym0$$fSuppressUnusedWarnings->UnfoldSym0$$fSuppressUnusedWarnings->UnfoldSym1$fSingI->XorSym0!$fSuppressUnusedWarnings->XorSym0$fSingI->FmapSym1"$fSuppressUnusedWarnings->FmapSym1$fSingI->FmapSym0"$fSuppressUnusedWarnings->FmapSym0$fSingI->TransposeSym0'$fSuppressUnusedWarnings->TransposeSym06$fSuppressUnusedWarnings->Mzip_6989586621681165277Sym16$fSuppressUnusedWarnings->Mzip_6989586621681165277Sym0:$fSuppressUnusedWarnings->MzipWith_6989586621681165294Sym2:$fSuppressUnusedWarnings->MzipWith_6989586621681165294Sym1:$fSuppressUnusedWarnings->MzipWith_6989586621681165294Sym0$fPMonadZipNonEmpty8$fSuppressUnusedWarnings->Munzip_6989586621681165315Sym0 SIsString sFromString PIsString FromStringFromStringSym0FromStringSym1$fPIsStringSymbol($fSuppressUnusedWarnings->FromStringSym0$fPIsStringConst<$fSuppressUnusedWarnings->FromString_6989586621681263306Sym0$fPIsStringIdentity<$fSuppressUnusedWarnings->FromString_6989586621681263313Sym0$fSIsStringSymbol$fSingI->FromStringSym0$fSIsStringIdentity$fSIsStringConstOptional OptionalSym0 OptionalSym1 sOptional$fSApplicativeDown$fSApplicative(,)$fSingI->OptionalSym0&$fSuppressUnusedWarnings->OptionalSym06$fSuppressUnusedWarnings->Pure_6989586621681265799Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621681265807Sym1:$fSuppressUnusedWarnings->TFHelper_6989586621681265807Sym08$fSuppressUnusedWarnings->LiftA2_6989586621681265822Sym28$fSuppressUnusedWarnings->LiftA2_6989586621681265822Sym1$fPApplicative(,)8$fSuppressUnusedWarnings->LiftA2_6989586621681265822Sym06$fSuppressUnusedWarnings->Pure_6989586621681265839Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621681265849Sym1$fPApplicativeDown:$fSuppressUnusedWarnings->TFHelper_6989586621681265849Sym0FilterM>=><=< MapAndUnzipMZipWithM ZipWithM_ ReplicateM ReplicateM_Unless<$!>Mfilter FilterMSym0 FilterMSym1 FilterMSym2>=>@#@$>=>@#@$$ >=>@#@$$$<=<@#@$<=<@#@$$ <=<@#@$$$MapAndUnzipMSym0MapAndUnzipMSym1MapAndUnzipMSym2 ZipWithMSym0 ZipWithMSym1 ZipWithMSym2 ZipWithMSym3 ZipWithM_Sym0 ZipWithM_Sym1 ZipWithM_Sym2 ZipWithM_Sym3ReplicateMSym0ReplicateMSym1ReplicateMSym2ReplicateM_Sym0ReplicateM_Sym1ReplicateM_Sym2 UnlessSym0 UnlessSym1 UnlessSym2<$!>@#@$ <$!>@#@$$ <$!>@#@$$$ MfilterSym0 MfilterSym1 MfilterSym2sMfilter%<$!>sUnless sReplicateM_ sReplicateM sZipWithM_ sZipWithM sMapAndUnzipM%<=<%>=>sFilterM $fSMonadDownQ$fSuppressUnusedWarnings->Let6989586621681275087Scrutinee_6989586621681274857Sym2Q$fSuppressUnusedWarnings->Let6989586621681275087Scrutinee_6989586621681274857Sym1Q$fSuppressUnusedWarnings->Let6989586621681275087Scrutinee_6989586621681274857Sym08$fSuppressUnusedWarnings->Lambda_6989586621681275084Sym28$fSuppressUnusedWarnings->Lambda_6989586621681275084Sym18$fSuppressUnusedWarnings->Lambda_6989586621681275084Sym05$fSuppressUnusedWarnings->Let6989586621681275107ZSym25$fSuppressUnusedWarnings->Let6989586621681275107ZSym15$fSuppressUnusedWarnings->Let6989586621681275107ZSym08$fSuppressUnusedWarnings->Lambda_6989586621681275104Sym28$fSuppressUnusedWarnings->Lambda_6989586621681275104Sym18$fSuppressUnusedWarnings->Lambda_6989586621681275104Sym08$fSuppressUnusedWarnings->Let6989586621681275130LoopSym28$fSuppressUnusedWarnings->Let6989586621681275130LoopSym18$fSuppressUnusedWarnings->Let6989586621681275130LoopSym08$fSuppressUnusedWarnings->Let6989586621681275149LoopSym28$fSuppressUnusedWarnings->Let6989586621681275149LoopSym18$fSuppressUnusedWarnings->Let6989586621681275149LoopSym08$fSuppressUnusedWarnings->Lambda_6989586621681275236Sym38$fSuppressUnusedWarnings->Lambda_6989586621681275236Sym28$fSuppressUnusedWarnings->Lambda_6989586621681275236Sym18$fSuppressUnusedWarnings->Lambda_6989586621681275236Sym08$fSuppressUnusedWarnings->Lambda_6989586621681275255Sym38$fSuppressUnusedWarnings->Lambda_6989586621681275255Sym28$fSuppressUnusedWarnings->Lambda_6989586621681275255Sym18$fSuppressUnusedWarnings->Lambda_6989586621681275255Sym08$fSuppressUnusedWarnings->Lambda_6989586621681275252Sym28$fSuppressUnusedWarnings->Lambda_6989586621681275252Sym18$fSuppressUnusedWarnings->Lambda_6989586621681275252Sym0$fSingI->MfilterSym1%$fSuppressUnusedWarnings->MfilterSym1$fSingI->MfilterSym0%$fSuppressUnusedWarnings->MfilterSym0$fSingI-><$!>@#@$$#$fSuppressUnusedWarnings-><$!>@#@$$$fSingI-><$!>@#@$"$fSuppressUnusedWarnings-><$!>@#@$$fSingI->UnlessSym1$$fSuppressUnusedWarnings->UnlessSym1$fSingI->UnlessSym0$$fSuppressUnusedWarnings->UnlessSym0$fSingI->ReplicateM_Sym1)$fSuppressUnusedWarnings->ReplicateM_Sym1$fSingI->ReplicateM_Sym0)$fSuppressUnusedWarnings->ReplicateM_Sym0$fSingI->ReplicateMSym1($fSuppressUnusedWarnings->ReplicateMSym1$fSingI->ReplicateMSym0($fSuppressUnusedWarnings->ReplicateMSym0$fSingI->FoldM_Sym2$$fSuppressUnusedWarnings->FoldM_Sym2$fSingI->FoldM_Sym1$$fSuppressUnusedWarnings->FoldM_Sym1$fSingI->FoldM_Sym0$$fSuppressUnusedWarnings->FoldM_Sym0$fSingI->FoldMSym2#$fSuppressUnusedWarnings->FoldMSym2$fSingI->FoldMSym1#$fSuppressUnusedWarnings->FoldMSym1$fSingI->FoldMSym0#$fSuppressUnusedWarnings->FoldMSym0$fSingI->ZipWithM_Sym2'$fSuppressUnusedWarnings->ZipWithM_Sym2$fSingI->ZipWithM_Sym1'$fSuppressUnusedWarnings->ZipWithM_Sym1$fSingI->ZipWithM_Sym0'$fSuppressUnusedWarnings->ZipWithM_Sym0$fSingI->ZipWithMSym2&$fSuppressUnusedWarnings->ZipWithMSym2$fSingI->ZipWithMSym1&$fSuppressUnusedWarnings->ZipWithMSym1$fSingI->ZipWithMSym0&$fSuppressUnusedWarnings->ZipWithMSym0$fSingI->MapAndUnzipMSym1*$fSuppressUnusedWarnings->MapAndUnzipMSym1$fSingI->MapAndUnzipMSym0*$fSuppressUnusedWarnings->MapAndUnzipMSym0$fSingI->>=>@#@$$$#$fSuppressUnusedWarnings->>=>@#@$$$$fSingI->>=>@#@$$"$fSuppressUnusedWarnings->>=>@#@$$$fSingI->>=>@#@$!$fSuppressUnusedWarnings->>=>@#@$$fSingI-><=<@#@$$$#$fSuppressUnusedWarnings-><=<@#@$$$$fSingI-><=<@#@$$"$fSuppressUnusedWarnings-><=<@#@$$$fSingI-><=<@#@$!$fSuppressUnusedWarnings-><=<@#@$$fSingI->FilterMSym1%$fSuppressUnusedWarnings->FilterMSym1$fSingI->FilterMSym0%$fSuppressUnusedWarnings->FilterMSym0Q$fSuppressUnusedWarnings->Let6989586621681275281Scrutinee_6989586621681274859Sym2Q$fSuppressUnusedWarnings->Let6989586621681275281Scrutinee_6989586621681274859Sym1Q$fSuppressUnusedWarnings->Let6989586621681275281Scrutinee_6989586621681274859Sym0 $fSMonad(,):$fSuppressUnusedWarnings->TFHelper_6989586621681275272Sym1 $fPMonad(,):$fSuppressUnusedWarnings->TFHelper_6989586621681275272Sym0:$fSuppressUnusedWarnings->TFHelper_6989586621681275294Sym1 $fPMonadDown:$fSuppressUnusedWarnings->TFHelper_6989586621681275294Sym0$fIsStringSomeSing$fMonoidSomeSing$fSemigroupSomeSing$fShowSomeSing $fNumSomeSing$fEnumSomeSing$fBoundedSomeSing $fOrdSomeSing $fEqSomeSing$fSingI->TyCon$fSingI->TyCon0$fSingI->TyCon1$fSingI->TyCon2$fSingI->TyCon3$fSingI->TyCon4$fSingI->TyCon5$fSingI->TyCon6@@@#@$@@@#@$$@@@#@$$$ ApplySym0 ApplySym1 ApplySym2~>@#@$~>@#@$$~>@#@$$$ KindOfSym0 KindOfSym1 SameKindSym0 SameKindSym1 SameKindSym2 DemoteSym0 DemoteSym1$$fSuppressUnusedWarnings->DemoteSym0&$fSuppressUnusedWarnings->SameKindSym1&$fSuppressUnusedWarnings->SameKindSym0$$fSuppressUnusedWarnings->KindOfSym0!$fSuppressUnusedWarnings->~>@#@$$ $fSuppressUnusedWarnings->~>@#@$#$fSuppressUnusedWarnings->ApplySym1#$fSuppressUnusedWarnings->ApplySym0!$fSuppressUnusedWarnings->@@@#@$$ $fSuppressUnusedWarnings->@@@#@$casessCases TypeErrorConvertPErrorMessage SErrorMessageSText SShowType:%<>::%$$: PErrorMessage ErrorMessage ErrorMessage'TextShowType:<>::$$:showErrorMessage typeError sTypeError$fSingIErrorMessage':$$:$fSingIErrorMessage':<>:$fSingIErrorMessage'ShowType$fSingIErrorMessage'Text$fSingKindErrorMessage' TypeErrorSym0 TypeErrorSym1:$$:@#@$ :$$:@#@$$ :$$:@#@$$$:<>:@#@$ :<>:@#@$$ :<>:@#@$$$ ShowTypeSym0 ShowTypeSym1TextSym0TextSym1$fSingI->TextSym0"$fSuppressUnusedWarnings->TextSym0$fSingI->ShowTypeSym0&$fSuppressUnusedWarnings->ShowTypeSym0$fSingI->:<>:@#@$$#$fSuppressUnusedWarnings->:<>:@#@$$$fSingI->:<>:@#@$"$fSuppressUnusedWarnings->:<>:@#@$$fSingI->:$$:@#@$$#$fSuppressUnusedWarnings->:$$:@#@$$$fSingI->:$$:@#@$"$fSuppressUnusedWarnings->:$$:@#@$$fSingI->TypeErrorSym0'$fSuppressUnusedWarnings->TypeErrorSym0 singletonStarApplyTyConAux2 ApplyTyConApplyTyConAux1GHC.BaseidBool GHC.MaybeNothing $fSingKind->DIDon'tInstantiate applySing8 applySing7 applySing6 applySing5 applySing4 applySing3 applySing2 GHC.ClassesEq testEqualityData.Type.Coercion testCoercionDerivedShowDecl DerivedEqDecl DerivedDeclded_declded_type_tyconded_type ded_mb_cxt ULetDecEnv ALetDecEnv LetDecEnv lde_bound_kvs lde_proms lde_infix lde_types lde_defns ULetDecRHS ALetDecRHS LetDecRHSUValue UFunctionAValue AFunctionIfAnn Unannotated AnnotatedAnnotationFlagADClauseADMatchADPatADWildPADSigPADBangPADTildePADConPADVarPADLitPADExpADSigEADLetEADCaseEADLamEADAppEADLitEADConEADVarE AInstDecl AClassDecl UInstDecl UClassDeclInstDeclid_methsid_sigs id_arg_tysid_nameid_cxt ClassDeclcd_ldecd_fdscd_tvbscd_namecd_cxt FamilyInfoClosedOpenTypeFamilyDeclgetTypeFamilyDeclClosedTypeFamilyDeclOpenTypeFamilyDecl TySynDeclDataDeclSingDSigPaInfos PromDPatInfosprom_dpat_sig_kvsprom_dpat_vars VarPromotions valueBinding typeBinding infixDeclemptyLetDecEnvbuildLetDecEnv qNewUniqueisInfixDataCon isDataConNameisUpcaseFalse substTypedsReifyTypeNameInfoPth-desugar-1.10-f595d4ca2f5816e502563b4be2aa7457d0592d8bbf5d525adf3ce82524c8d346!Language.Haskell.TH.Desugar.ReifylookupTypeNameWithLocalstemplate-haskellLanguage.Haskell.TH.SyntaxName Language.Haskell.TH.Desugar.CoredsReifyQWithAuxQWArunQWA basicTypesboundedBasicTypesenumBasicTypessemigroupBasicTypesmonoidBasicTypesqReportWarning qReportError checkForRepcheckForRepInDeclstysOfConFieldsextractNameArgsextractNameTypes extractNameupcase toUpcaseStrnoPrefix prefixConName prefixName suffixNameuniquePrefixesextractTvbKindextractTvbName tvbToTypeinferMaybeKindTVresultSigToMaybeKindravel countArgs noExactTyVars substKind subst_tvbcuskifyfoldType foldTypeTvbsbuildDataDTvbsfoldExpisFunTy orIfEmpty multiCase wrapDesugarcomp1comp2evalWithoutAux evalForAux evalForPair addBinding addElement concatMapMlistifyfstOf3liftFstliftSndsnocView partitionWithpartitionWithMpartitionLetDecs zipWith3M mapAndUnzip3M isHsLettersplitUnderscoresStringJustboolNameandName compareName minBoundName maxBoundNametyEqNamerepNamenilNameconsNamelistNametyFunArrowName applyNameapplyTyConNameapplyTyConAux1Name symbolNamenatName typeRepName stringNameeqNameordName boundedName orderingNamesingFamilyName singIName singMethName toSingName fromSingName demoteName withSingINamesingKindClassName sEqClassName sEqMethNamesIfName sconsNamesnilName strueNamesomeSingTypeNamesomeSingDataName sListNamesDecideClassNamesDecideMethNametestEqualityClassNametestEqualityMethNamedecideEqualityNametestCoercionClassNametestCoercionMethNamedecideCoercionName provedName disprovedNamereflName equalityName applySingNamesuppressClassNamesuppressMethodName thenCmpName sameKindNametyFromIntegerName tyNegateNamesFromIntegerName sNegateName errorName foldlName cmpEQName cmpLTName cmpGTNamesingletonsToEnumNamesingletonsFromEnumNameenumNamesingletonsEnumName equalsNameconstraintNameshowName showSName showCharName showParenName showSpaceName showsPrecNameshowStringName showSingName showSing'Name composeNamegtNameshowCommaSpaceNametyFromStringNamesFromStringName foldableName foldMapName memptyName mappendName foldrName functorNamefmapName replaceNametraversableName traverseNamepureNameapName liftA2NamesingPkg mk_name_tc mk_name_d mk_name_vmkTupleTypeNamemkTupleDataNamepromoteValNameLhspromoteValNameLhsPrefix promoteValRhs promoteTySympromoteClassNamemkTyName mkTyConName falseTySym trueTySymboolKiandTySymsingDataConName singTyConName singClassName singValName singFamilysingKindConstraintapplymkListE foldApplymkEqPredmodifyConNameDType singInfixDeclsingFixityDeclarationsingFixityDeclarations promoteTypepromoteTypeArgpromoteUnraveledLetBindPrM allLocalsemitDecs emitDecsM lambdaBindletBind lookupVarE forallBindallBoundKindVarspromoteM promoteM_ promoteMDecsSgMbindLets bindContext askContext lookupConE wrapSingFun wrapUnSingFunsingM singDecsMsingTypesingPred singPredRecmkEqTypeInstance defunInfodefunTypeDeclsbuildDefunSymsbuildDefunSymsClosedTypeFamilyDbuildDefunSymsOpenTypeFamilyDbuildDefunSymsTypeFamilyHeadbuildDefunSymsTySynDbuildDefunSymsDataDdefunReifyFixitydefunctionalize dropTvbKindbuildTyFunArrowbuildTyFunArrow_maybe ravelTyFun singDefuns singDataDsingCtorft_trivft_var ft_ty_app ft_bad_app ft_forallisNonVanillaDataTypeGHC.EnumEnumfunctorLikeTraverse FFoldTypeFT DerivDescisTyFamilyNamefunctorLikeValidityChecksdeepSubtypesContainingfoldDataConArgsgetDVarTName_maybe mkSimpleLam mkSimpleLam2mkSimpleConClauseisFunctorLikeClassNameinferConstraintsinferConstraintsDefmkEqualityInstancemkTestInstance TestInstance TestCoercion TestEqualityEqualityClassDesc sEqClassDescsDecideClassDescmkEqMethClausemkEmptyEqMethClausemkDecideMethClausemkEmptyDecideMethClausemkTraversableInstanceShowModeShow ForPromotion ForShowSingparenInfixConNamemkShowSingContextmkShowInstance mkOrdInstancemkFoldableInstanceReplacer ImmediateNestedreplacemkFunctorInstancemkEnumInstancemkBoundedInstance partitionDecsOrdpartitionDerivingPartitionedDecsPDecspd_derived_show_decspd_derived_eq_decspd_closed_type_family_decspd_open_type_family_decspd_ty_syn_decs pd_data_decspd_instance_decs pd_class_decs pd_let_decs partitionDecpartitionClassDecpartitionInstanceDecisStockOrDefault promoteMethodpromoteInstance promoteInfo promoteDecspromoteDataDecspromoteLetDecspromoteDataDecpromoteClassDecpromoteInstanceDecpromoteLetDecEnvpromoteInfixDeclpromoteLetDecRHS promoteClause promoteMatch promotePat promoteExp promoteLitExp promoteLitPatpromoteDerivedEqDec mkSigPaCaseE singMatchsingEqualityInstancesingInfosingTopLevelDecs buildDataLets buildMethLets singClassD singInstD singLetDecEnv singTySig singLetDecRHS singClausesingPatsingExpsingDerivedEqDecs sEqToSDecidesingDerivedShowDecs isExceptionsingLit maybeSigTIdentitySym0KindInferenceRunIdentitySym0KindInferenceTuple7Sym0KindInferenceTuple7Sym1KindInferenceTuple7Sym2KindInferenceTuple7Sym3KindInferenceTuple7Sym4KindInferenceTuple7Sym5KindInferenceTuple7Sym6KindInferenceTuple6Sym0KindInferenceTuple6Sym1KindInferenceTuple6Sym2KindInferenceTuple6Sym3KindInferenceTuple6Sym4KindInferenceTuple6Sym5KindInferenceTuple5Sym0KindInferenceTuple5Sym1KindInferenceTuple5Sym2KindInferenceTuple5Sym3KindInferenceTuple5Sym4KindInferenceTuple4Sym0KindInferenceTuple4Sym1KindInferenceTuple4Sym2KindInferenceTuple4Sym3KindInferenceTuple3Sym0KindInferenceTuple3Sym1KindInferenceTuple3Sym2KindInferenceTuple2Sym0KindInferenceTuple2Sym1KindInference ::|@#@$### ::|@#@$$###RightSym0KindInferenceLeftSym0KindInference ::@#@$### ::@#@$$###JustSym0KindInferenceFoldlSym0KindInferenceFoldlSym1KindInferenceFoldlSym2KindInferenceLet6989586621679335856LgoLet6989586621679335856LgoSym0*Let6989586621679335856LgoSym0KindInferenceLet6989586621679335856LgoSym1*Let6989586621679335856LgoSym1KindInferenceLet6989586621679335856LgoSym2*Let6989586621679335856LgoSym2KindInferenceLet6989586621679335856LgoSym3*Let6989586621679335856LgoSym3KindInferenceLet6989586621679335856LgoSym4*Let6989586621679335856LgoSym4KindInferenceLet6989586621679335856LgoSym5TrueData.Typeable.Internal SomeTypeRepTypeRepGHC.PrimTYPE RuntimeRep D:R:SingTYPETypeGHC.ErrerrorerrorWithoutStackTrace undefinedCmpNatGHC.NumNumgenLog2Lambda_6989586621679570915Lambda_6989586621679570918Lambda_6989586621679570948Lambda_6989586621679570951Lambda_6989586621679570954Lambda_6989586621679570957Lambda_6989586621679570960Lambda_6989586621679571028Lambda_6989586621679571031Lambda_6989586621679571034Lambda_6989586621679571037Lambda_6989586621679571086Lambda_6989586621679571089Lambda_6989586621679571092Lambda_6989586621679571125Lambda_6989586621679571128Lambda_6989586621679571148Case_6989586621679571161Lambda_6989586621679571201Lambda_6989586621679571338Case_6989586621679571341Lambda_6989586621679631984Lambda_6989586621679632017Lambda_6989586621679632053Lambda_6989586621679632073Lambda_6989586621679632094Lambda_6989586621679632103Case_6989586621679632350Case_6989586621679632357Mplus_6989586621679571371Sym0*Mplus_6989586621679571371Sym0KindInferenceMplus_6989586621679571371Sym1*Mplus_6989586621679571371Sym1KindInferenceMplus_6989586621679571371Sym2Mplus_6989586621679571371Mzero_6989586621679571367Sym0Mzero_6989586621679571367MplusSym0KindInferenceMplusSym1KindInference :<|>@#@$### :<|>@#@$$###Return_6989586621679571351Sym0+Return_6989586621679571351Sym0KindInferenceReturn_6989586621679571351Sym1Return_6989586621679571351 TFHelper_6989586621679571330Sym0-TFHelper_6989586621679571330Sym0KindInference TFHelper_6989586621679571330Sym1-TFHelper_6989586621679571330Sym1KindInference TFHelper_6989586621679571330Sym2TFHelper_6989586621679571330Lambda_6989586621679571338Sym0+Lambda_6989586621679571338Sym0KindInferenceLambda_6989586621679571338Sym1+Lambda_6989586621679571338Sym1KindInferenceLambda_6989586621679571338Sym2+Lambda_6989586621679571338Sym2KindInferenceLambda_6989586621679571338Sym3ReturnSym0KindInference :>>@#@$### :>>@#@$$### :>>=@#@$### :>>=@#@$$### TFHelper_6989586621679571304Sym0-TFHelper_6989586621679571304Sym0KindInference TFHelper_6989586621679571304Sym1-TFHelper_6989586621679571304Sym1KindInference TFHelper_6989586621679571304Sym2TFHelper_6989586621679571304 TFHelper_6989586621679571292Sym0-TFHelper_6989586621679571292Sym0KindInference TFHelper_6989586621679571292Sym1-TFHelper_6989586621679571292Sym1KindInference TFHelper_6989586621679571292Sym2TFHelper_6989586621679571292LiftA2_6989586621679571274Sym0+LiftA2_6989586621679571274Sym0KindInferenceLiftA2_6989586621679571274Sym1+LiftA2_6989586621679571274Sym1KindInferenceLiftA2_6989586621679571274Sym2+LiftA2_6989586621679571274Sym2KindInferenceLiftA2_6989586621679571274Sym3LiftA2_6989586621679571274 TFHelper_6989586621679571257Sym0-TFHelper_6989586621679571257Sym0KindInference TFHelper_6989586621679571257Sym1-TFHelper_6989586621679571257Sym1KindInference TFHelper_6989586621679571257Sym2TFHelper_6989586621679571257 :<*@#@$### :<*@#@$$### :*>@#@$### :*>@#@$$###LiftA2Sym0KindInferenceLiftA2Sym1KindInferenceLiftA2Sym2KindInference :<*>@#@$### :<*>@#@$$###PureSym0KindInference TFHelper_6989586621679571221Sym0-TFHelper_6989586621679571221Sym0KindInference TFHelper_6989586621679571221Sym1-TFHelper_6989586621679571221Sym1KindInference TFHelper_6989586621679571221Sym2TFHelper_6989586621679571221 :<$@#@$### :<$@#@$$###FmapSym0KindInferenceFmapSym1KindInference :<**>@#@$### :<**>@#@$$###LiftASym0KindInferenceLiftASym1KindInferenceLiftA3Sym0KindInferenceLiftA3Sym1KindInferenceLiftA3Sym2KindInferenceLiftA3Sym3KindInference LiftA3Sym4JoinSym0KindInference :=<<@#@$### :=<<@#@$$###WhenSym0KindInferenceWhenSym1KindInferenceLiftMSym0KindInferenceLiftMSym1KindInferenceLiftM2Sym0KindInferenceLiftM2Sym1KindInferenceLiftM2Sym2KindInferenceLiftM3Sym0KindInferenceLiftM3Sym1KindInferenceLiftM3Sym2KindInferenceLiftM3Sym3KindInferenceLiftM4Sym0KindInferenceLiftM4Sym1KindInferenceLiftM4Sym2KindInferenceLiftM4Sym3KindInferenceLiftM4Sym4KindInferenceLiftM5Sym0KindInferenceLiftM5Sym1KindInferenceLiftM5Sym2KindInferenceLiftM5Sym3KindInferenceLiftM5Sym4KindInferenceLiftM5Sym5KindInferenceApSym0KindInferenceApSym1KindInferenceGuardSym0KindInferenceLambda_6989586621679571201Sym0+Lambda_6989586621679571201Sym0KindInferenceLambda_6989586621679571201Sym1+Lambda_6989586621679571201Sym1KindInferenceLambda_6989586621679571201Sym2+Lambda_6989586621679571201Sym2KindInferenceLambda_6989586621679571201Sym3+Lambda_6989586621679571201Sym3KindInferenceLambda_6989586621679571201Sym4Lambda_6989586621679571148Sym0+Lambda_6989586621679571148Sym0KindInferenceLambda_6989586621679571148Sym1+Lambda_6989586621679571148Sym1KindInferenceLambda_6989586621679571148Sym2+Lambda_6989586621679571148Sym2KindInferenceLambda_6989586621679571148Sym3Lambda_6989586621679571125Sym0+Lambda_6989586621679571125Sym0KindInferenceLambda_6989586621679571125Sym1+Lambda_6989586621679571125Sym1KindInferenceLambda_6989586621679571125Sym2+Lambda_6989586621679571125Sym2KindInferenceLambda_6989586621679571125Sym3+Lambda_6989586621679571125Sym3KindInferenceLambda_6989586621679571125Sym4Lambda_6989586621679571128Sym0+Lambda_6989586621679571128Sym0KindInferenceLambda_6989586621679571128Sym1+Lambda_6989586621679571128Sym1KindInferenceLambda_6989586621679571128Sym2+Lambda_6989586621679571128Sym2KindInferenceLambda_6989586621679571128Sym3+Lambda_6989586621679571128Sym3KindInferenceLambda_6989586621679571128Sym4+Lambda_6989586621679571128Sym4KindInferenceLambda_6989586621679571128Sym5Lambda_6989586621679571086Sym0+Lambda_6989586621679571086Sym0KindInferenceLambda_6989586621679571086Sym1+Lambda_6989586621679571086Sym1KindInferenceLambda_6989586621679571086Sym2+Lambda_6989586621679571086Sym2KindInferenceLambda_6989586621679571086Sym3+Lambda_6989586621679571086Sym3KindInferenceLambda_6989586621679571086Sym4+Lambda_6989586621679571086Sym4KindInferenceLambda_6989586621679571086Sym5Lambda_6989586621679571089Sym0+Lambda_6989586621679571089Sym0KindInferenceLambda_6989586621679571089Sym1+Lambda_6989586621679571089Sym1KindInferenceLambda_6989586621679571089Sym2+Lambda_6989586621679571089Sym2KindInferenceLambda_6989586621679571089Sym3+Lambda_6989586621679571089Sym3KindInferenceLambda_6989586621679571089Sym4+Lambda_6989586621679571089Sym4KindInferenceLambda_6989586621679571089Sym5+Lambda_6989586621679571089Sym5KindInferenceLambda_6989586621679571089Sym6Lambda_6989586621679571092Sym0+Lambda_6989586621679571092Sym0KindInferenceLambda_6989586621679571092Sym1+Lambda_6989586621679571092Sym1KindInferenceLambda_6989586621679571092Sym2+Lambda_6989586621679571092Sym2KindInferenceLambda_6989586621679571092Sym3+Lambda_6989586621679571092Sym3KindInferenceLambda_6989586621679571092Sym4+Lambda_6989586621679571092Sym4KindInferenceLambda_6989586621679571092Sym5+Lambda_6989586621679571092Sym5KindInferenceLambda_6989586621679571092Sym6+Lambda_6989586621679571092Sym6KindInferenceLambda_6989586621679571092Sym7Lambda_6989586621679571028Sym0+Lambda_6989586621679571028Sym0KindInferenceLambda_6989586621679571028Sym1+Lambda_6989586621679571028Sym1KindInferenceLambda_6989586621679571028Sym2+Lambda_6989586621679571028Sym2KindInferenceLambda_6989586621679571028Sym3+Lambda_6989586621679571028Sym3KindInferenceLambda_6989586621679571028Sym4+Lambda_6989586621679571028Sym4KindInferenceLambda_6989586621679571028Sym5+Lambda_6989586621679571028Sym5KindInferenceLambda_6989586621679571028Sym6Lambda_6989586621679571031Sym0+Lambda_6989586621679571031Sym0KindInferenceLambda_6989586621679571031Sym1+Lambda_6989586621679571031Sym1KindInferenceLambda_6989586621679571031Sym2+Lambda_6989586621679571031Sym2KindInferenceLambda_6989586621679571031Sym3+Lambda_6989586621679571031Sym3KindInferenceLambda_6989586621679571031Sym4+Lambda_6989586621679571031Sym4KindInferenceLambda_6989586621679571031Sym5+Lambda_6989586621679571031Sym5KindInferenceLambda_6989586621679571031Sym6+Lambda_6989586621679571031Sym6KindInferenceLambda_6989586621679571031Sym7Lambda_6989586621679571034Sym0+Lambda_6989586621679571034Sym0KindInferenceLambda_6989586621679571034Sym1+Lambda_6989586621679571034Sym1KindInferenceLambda_6989586621679571034Sym2+Lambda_6989586621679571034Sym2KindInferenceLambda_6989586621679571034Sym3+Lambda_6989586621679571034Sym3KindInferenceLambda_6989586621679571034Sym4+Lambda_6989586621679571034Sym4KindInferenceLambda_6989586621679571034Sym5+Lambda_6989586621679571034Sym5KindInferenceLambda_6989586621679571034Sym6+Lambda_6989586621679571034Sym6KindInferenceLambda_6989586621679571034Sym7+Lambda_6989586621679571034Sym7KindInferenceLambda_6989586621679571034Sym8Lambda_6989586621679571037Sym0+Lambda_6989586621679571037Sym0KindInferenceLambda_6989586621679571037Sym1+Lambda_6989586621679571037Sym1KindInferenceLambda_6989586621679571037Sym2+Lambda_6989586621679571037Sym2KindInferenceLambda_6989586621679571037Sym3+Lambda_6989586621679571037Sym3KindInferenceLambda_6989586621679571037Sym4+Lambda_6989586621679571037Sym4KindInferenceLambda_6989586621679571037Sym5+Lambda_6989586621679571037Sym5KindInferenceLambda_6989586621679571037Sym6+Lambda_6989586621679571037Sym6KindInferenceLambda_6989586621679571037Sym7+Lambda_6989586621679571037Sym7KindInferenceLambda_6989586621679571037Sym8+Lambda_6989586621679571037Sym8KindInferenceLambda_6989586621679571037Sym9Lambda_6989586621679570948Sym0+Lambda_6989586621679570948Sym0KindInferenceLambda_6989586621679570948Sym1+Lambda_6989586621679570948Sym1KindInferenceLambda_6989586621679570948Sym2+Lambda_6989586621679570948Sym2KindInferenceLambda_6989586621679570948Sym3+Lambda_6989586621679570948Sym3KindInferenceLambda_6989586621679570948Sym4+Lambda_6989586621679570948Sym4KindInferenceLambda_6989586621679570948Sym5+Lambda_6989586621679570948Sym5KindInferenceLambda_6989586621679570948Sym6+Lambda_6989586621679570948Sym6KindInferenceLambda_6989586621679570948Sym7Lambda_6989586621679570951Sym0+Lambda_6989586621679570951Sym0KindInferenceLambda_6989586621679570951Sym1+Lambda_6989586621679570951Sym1KindInferenceLambda_6989586621679570951Sym2+Lambda_6989586621679570951Sym2KindInferenceLambda_6989586621679570951Sym3+Lambda_6989586621679570951Sym3KindInferenceLambda_6989586621679570951Sym4+Lambda_6989586621679570951Sym4KindInferenceLambda_6989586621679570951Sym5+Lambda_6989586621679570951Sym5KindInferenceLambda_6989586621679570951Sym6+Lambda_6989586621679570951Sym6KindInferenceLambda_6989586621679570951Sym7+Lambda_6989586621679570951Sym7KindInferenceLambda_6989586621679570951Sym8Lambda_6989586621679570954Sym0+Lambda_6989586621679570954Sym0KindInferenceLambda_6989586621679570954Sym1+Lambda_6989586621679570954Sym1KindInferenceLambda_6989586621679570954Sym2+Lambda_6989586621679570954Sym2KindInferenceLambda_6989586621679570954Sym3+Lambda_6989586621679570954Sym3KindInferenceLambda_6989586621679570954Sym4+Lambda_6989586621679570954Sym4KindInferenceLambda_6989586621679570954Sym5+Lambda_6989586621679570954Sym5KindInferenceLambda_6989586621679570954Sym6+Lambda_6989586621679570954Sym6KindInferenceLambda_6989586621679570954Sym7+Lambda_6989586621679570954Sym7KindInferenceLambda_6989586621679570954Sym8+Lambda_6989586621679570954Sym8KindInferenceLambda_6989586621679570954Sym9Lambda_6989586621679570957Sym0+Lambda_6989586621679570957Sym0KindInferenceLambda_6989586621679570957Sym1+Lambda_6989586621679570957Sym1KindInferenceLambda_6989586621679570957Sym2+Lambda_6989586621679570957Sym2KindInferenceLambda_6989586621679570957Sym3+Lambda_6989586621679570957Sym3KindInferenceLambda_6989586621679570957Sym4+Lambda_6989586621679570957Sym4KindInferenceLambda_6989586621679570957Sym5+Lambda_6989586621679570957Sym5KindInferenceLambda_6989586621679570957Sym6+Lambda_6989586621679570957Sym6KindInferenceLambda_6989586621679570957Sym7+Lambda_6989586621679570957Sym7KindInferenceLambda_6989586621679570957Sym8+Lambda_6989586621679570957Sym8KindInferenceLambda_6989586621679570957Sym9+Lambda_6989586621679570957Sym9KindInferenceLambda_6989586621679570957Sym10Lambda_6989586621679570960Sym0+Lambda_6989586621679570960Sym0KindInferenceLambda_6989586621679570960Sym1+Lambda_6989586621679570960Sym1KindInferenceLambda_6989586621679570960Sym2+Lambda_6989586621679570960Sym2KindInferenceLambda_6989586621679570960Sym3+Lambda_6989586621679570960Sym3KindInferenceLambda_6989586621679570960Sym4+Lambda_6989586621679570960Sym4KindInferenceLambda_6989586621679570960Sym5+Lambda_6989586621679570960Sym5KindInferenceLambda_6989586621679570960Sym6+Lambda_6989586621679570960Sym6KindInferenceLambda_6989586621679570960Sym7+Lambda_6989586621679570960Sym7KindInferenceLambda_6989586621679570960Sym8+Lambda_6989586621679570960Sym8KindInferenceLambda_6989586621679570960Sym9+Lambda_6989586621679570960Sym9KindInferenceLambda_6989586621679570960Sym10,Lambda_6989586621679570960Sym10KindInferenceLambda_6989586621679570960Sym11Lambda_6989586621679570915Sym0+Lambda_6989586621679570915Sym0KindInferenceLambda_6989586621679570915Sym1+Lambda_6989586621679570915Sym1KindInferenceLambda_6989586621679570915Sym2+Lambda_6989586621679570915Sym2KindInferenceLambda_6989586621679570915Sym3Lambda_6989586621679570918Sym0+Lambda_6989586621679570918Sym0KindInferenceLambda_6989586621679570918Sym1+Lambda_6989586621679570918Sym1KindInferenceLambda_6989586621679570918Sym2+Lambda_6989586621679570918Sym2KindInferenceLambda_6989586621679570918Sym3+Lambda_6989586621679570918Sym3KindInferenceLambda_6989586621679570918Sym4 TFHelper_6989586621679632414Sym0-TFHelper_6989586621679632414Sym0KindInference TFHelper_6989586621679632414Sym1-TFHelper_6989586621679632414Sym1KindInference TFHelper_6989586621679632414Sym2TFHelper_6989586621679632414Empty_6989586621679632410Sym0Empty_6989586621679632410 TFHelper_6989586621679632398Sym0-TFHelper_6989586621679632398Sym0KindInference TFHelper_6989586621679632398Sym1-TFHelper_6989586621679632398Sym1KindInference TFHelper_6989586621679632398Sym2TFHelper_6989586621679632398Let6989586621679632406LLet6989586621679632406LSym0(Let6989586621679632406LSym0KindInferenceLet6989586621679632406LSym1Empty_6989586621679632394Sym0Empty_6989586621679632394 TFHelper_6989586621679632383Sym0-TFHelper_6989586621679632383Sym0KindInference TFHelper_6989586621679632383Sym1-TFHelper_6989586621679632383Sym1KindInference TFHelper_6989586621679632383Sym2TFHelper_6989586621679632383 TFHelper_6989586621679632371Sym0-TFHelper_6989586621679632371Sym0KindInference TFHelper_6989586621679632371Sym1-TFHelper_6989586621679632371Sym1KindInference TFHelper_6989586621679632371Sym2TFHelper_6989586621679632371 TFHelper_6989586621679632324Sym0-TFHelper_6989586621679632324Sym0KindInference TFHelper_6989586621679632324Sym1-TFHelper_6989586621679632324Sym1KindInference TFHelper_6989586621679632324Sym2TFHelper_6989586621679632324+Let6989586621679632333X_6989586621679632334Let6989586621679632333BLet6989586621679632333BsLet6989586621679632333Bs'Let6989586621679632333ToList/Let6989586621679632333X_6989586621679632334Sym0@#@$### :<>@#@$$###WrapMonoidSym0KindInferenceUnwrapMonoidSym0KindInferenceLastSym0KindInferenceGetLastSym0KindInferenceFirstSym0KindInferenceGetFirstSym0KindInferenceMaxSym0KindInferenceGetMaxSym0KindInferenceMinSym0KindInferenceGetMinSym0KindInferenceProductSym0KindInferenceGetProductSym0KindInferenceSumSym0KindInferenceGetSumSym0KindInferenceAnySym0KindInferenceGetAnySym0KindInferenceAllSym0KindInferenceGetAllSym0KindInferenceDualSym0KindInferenceGetDualSym0KindInferenceOptionSym0KindInferenceGetOptionSym0KindInference MaxBound_6989586621679855034Sym0MaxBound_6989586621679855034 MinBound_6989586621679855032Sym0MinBound_6989586621679855032 MaxBound_6989586621679855027Sym0MaxBound_6989586621679855027 MinBound_6989586621679855025Sym0MinBound_6989586621679855025 MaxBound_6989586621679855020Sym0MaxBound_6989586621679855020 MinBound_6989586621679855018Sym0MinBound_6989586621679855018 MaxBound_6989586621679855013Sym0MaxBound_6989586621679855013 MinBound_6989586621679855011Sym0MinBound_6989586621679855011 MaxBound_6989586621679855006Sym0MaxBound_6989586621679855006 MinBound_6989586621679855004Sym0MinBound_6989586621679855004 MaxBound_6989586621679854999Sym0MaxBound_6989586621679854999 MinBound_6989586621679854997Sym0MinBound_6989586621679854997 MaxBound_6989586621679854992Sym0MaxBound_6989586621679854992 MinBound_6989586621679854990Sym0MinBound_6989586621679854990 MaxBound_6989586621679854985Sym0MaxBound_6989586621679854985 MinBound_6989586621679854983Sym0MinBound_6989586621679854983 MaxBound_6989586621679854981Sym0MaxBound_6989586621679854981 MinBound_6989586621679854979Sym0MinBound_6989586621679854979 MaxBound_6989586621679854977Sym0MaxBound_6989586621679854977 MinBound_6989586621679854975Sym0MinBound_6989586621679854975Compare_6989586621679859898Sym0,Compare_6989586621679859898Sym0KindInferenceCompare_6989586621679859898Sym1,Compare_6989586621679859898Sym1KindInferenceCompare_6989586621679859898Sym2Compare_6989586621679859898Compare_6989586621679859877Sym0,Compare_6989586621679859877Sym0KindInferenceCompare_6989586621679859877Sym1,Compare_6989586621679859877Sym1KindInferenceCompare_6989586621679859877Sym2Compare_6989586621679859877Compare_6989586621679859856Sym0,Compare_6989586621679859856Sym0KindInferenceCompare_6989586621679859856Sym1,Compare_6989586621679859856Sym1KindInferenceCompare_6989586621679859856Sym2Compare_6989586621679859856Compare_6989586621679859835Sym0,Compare_6989586621679859835Sym0KindInferenceCompare_6989586621679859835Sym1,Compare_6989586621679859835Sym1KindInferenceCompare_6989586621679859835Sym2Compare_6989586621679859835Compare_6989586621679859814Sym0,Compare_6989586621679859814Sym0KindInferenceCompare_6989586621679859814Sym1,Compare_6989586621679859814Sym1KindInferenceCompare_6989586621679859814Sym2Compare_6989586621679859814Compare_6989586621679859793Sym0,Compare_6989586621679859793Sym0KindInferenceCompare_6989586621679859793Sym1,Compare_6989586621679859793Sym1KindInferenceCompare_6989586621679859793Sym2Compare_6989586621679859793Compare_6989586621679859772Sym0,Compare_6989586621679859772Sym0KindInferenceCompare_6989586621679859772Sym1,Compare_6989586621679859772Sym1KindInferenceCompare_6989586621679859772Sym2Compare_6989586621679859772Compare_6989586621679859751Sym0,Compare_6989586621679859751Sym0KindInferenceCompare_6989586621679859751Sym1,Compare_6989586621679859751Sym1KindInferenceCompare_6989586621679859751Sym2Compare_6989586621679859751Compare_6989586621679859733Sym0,Compare_6989586621679859733Sym0KindInferenceCompare_6989586621679859733Sym1,Compare_6989586621679859733Sym1KindInferenceCompare_6989586621679859733Sym2Compare_6989586621679859733Compare_6989586621679859715Sym0,Compare_6989586621679859715Sym0KindInferenceCompare_6989586621679859715Sym1,Compare_6989586621679859715Sym1KindInferenceCompare_6989586621679859715Sym2Compare_6989586621679859715Compare_6989586621679859694Sym0,Compare_6989586621679859694Sym0KindInferenceCompare_6989586621679859694Sym1,Compare_6989586621679859694Sym1KindInferenceCompare_6989586621679859694Sym2Compare_6989586621679859694Max_Min_#FromInteger_6989586621679868494Sym00FromInteger_6989586621679868494Sym0KindInference#FromInteger_6989586621679868494Sym1FromInteger_6989586621679868494Signum_6989586621679868487Sym0+Signum_6989586621679868487Sym0KindInferenceSignum_6989586621679868487Sym1Signum_6989586621679868487Abs_6989586621679868480Sym0(Abs_6989586621679868480Sym0KindInferenceAbs_6989586621679868480Sym1Abs_6989586621679868480Negate_6989586621679868473Sym0+Negate_6989586621679868473Sym0KindInferenceNegate_6989586621679868473Sym1Negate_6989586621679868473 TFHelper_6989586621679868462Sym0-TFHelper_6989586621679868462Sym0KindInference TFHelper_6989586621679868462Sym1-TFHelper_6989586621679868462Sym1KindInference TFHelper_6989586621679868462Sym2TFHelper_6989586621679868462 TFHelper_6989586621679868450Sym0-TFHelper_6989586621679868450Sym0KindInference TFHelper_6989586621679868450Sym1-TFHelper_6989586621679868450Sym1KindInference TFHelper_6989586621679868450Sym2TFHelper_6989586621679868450 TFHelper_6989586621679868438Sym0-TFHelper_6989586621679868438Sym0KindInference TFHelper_6989586621679868438Sym1-TFHelper_6989586621679868438Sym1KindInference TFHelper_6989586621679868438Sym2TFHelper_6989586621679868438 TFHelper_6989586621679868426Sym0-TFHelper_6989586621679868426Sym0KindInference TFHelper_6989586621679868426Sym1-TFHelper_6989586621679868426Sym1KindInference TFHelper_6989586621679868426Sym2TFHelper_6989586621679868426 TFHelper_6989586621679868414Sym0-TFHelper_6989586621679868414Sym0KindInference TFHelper_6989586621679868414Sym1-TFHelper_6989586621679868414Sym1KindInference TFHelper_6989586621679868414Sym2TFHelper_6989586621679868414 TFHelper_6989586621679868395Sym0-TFHelper_6989586621679868395Sym0KindInference TFHelper_6989586621679868395Sym1-TFHelper_6989586621679868395Sym1KindInference TFHelper_6989586621679868395Sym2TFHelper_6989586621679868395Lambda_6989586621679868403Sym0+Lambda_6989586621679868403Sym0KindInferenceLambda_6989586621679868403Sym1+Lambda_6989586621679868403Sym1KindInferenceLambda_6989586621679868403Sym2+Lambda_6989586621679868403Sym2KindInferenceLambda_6989586621679868403Sym3Fmap_6989586621679868383Sym0)Fmap_6989586621679868383Sym0KindInferenceFmap_6989586621679868383Sym1)Fmap_6989586621679868383Sym1KindInferenceFmap_6989586621679868383Sym2Fmap_6989586621679868383 TFHelper_6989586621679868371Sym0-TFHelper_6989586621679868371Sym0KindInference TFHelper_6989586621679868371Sym1-TFHelper_6989586621679868371Sym1KindInference TFHelper_6989586621679868371Sym2TFHelper_6989586621679868371Pure_6989586621679868361Sym0)Pure_6989586621679868361Sym0KindInferencePure_6989586621679868361Sym1Pure_6989586621679868361#FromInteger_6989586621679868354Sym00FromInteger_6989586621679868354Sym0KindInference#FromInteger_6989586621679868354Sym1FromInteger_6989586621679868354Signum_6989586621679868347Sym0+Signum_6989586621679868347Sym0KindInferenceSignum_6989586621679868347Sym1Signum_6989586621679868347Abs_6989586621679868340Sym0(Abs_6989586621679868340Sym0KindInferenceAbs_6989586621679868340Sym1Abs_6989586621679868340Negate_6989586621679868333Sym0+Negate_6989586621679868333Sym0KindInferenceNegate_6989586621679868333Sym1Negate_6989586621679868333 TFHelper_6989586621679868322Sym0-TFHelper_6989586621679868322Sym0KindInference TFHelper_6989586621679868322Sym1-TFHelper_6989586621679868322Sym1KindInference TFHelper_6989586621679868322Sym2TFHelper_6989586621679868322 TFHelper_6989586621679868310Sym0-TFHelper_6989586621679868310Sym0KindInference TFHelper_6989586621679868310Sym1-TFHelper_6989586621679868310Sym1KindInference TFHelper_6989586621679868310Sym2TFHelper_6989586621679868310 TFHelper_6989586621679868298Sym0-TFHelper_6989586621679868298Sym0KindInference TFHelper_6989586621679868298Sym1-TFHelper_6989586621679868298Sym1KindInference TFHelper_6989586621679868298Sym2TFHelper_6989586621679868298 TFHelper_6989586621679868286Sym0-TFHelper_6989586621679868286Sym0KindInference TFHelper_6989586621679868286Sym1-TFHelper_6989586621679868286Sym1KindInference TFHelper_6989586621679868286Sym2TFHelper_6989586621679868286 TFHelper_6989586621679868274Sym0-TFHelper_6989586621679868274Sym0KindInference TFHelper_6989586621679868274Sym1-TFHelper_6989586621679868274Sym1KindInference TFHelper_6989586621679868274Sym2TFHelper_6989586621679868274 TFHelper_6989586621679868255Sym0-TFHelper_6989586621679868255Sym0KindInference TFHelper_6989586621679868255Sym1-TFHelper_6989586621679868255Sym1KindInference TFHelper_6989586621679868255Sym2TFHelper_6989586621679868255Lambda_6989586621679868263Sym0+Lambda_6989586621679868263Sym0KindInferenceLambda_6989586621679868263Sym1+Lambda_6989586621679868263Sym1KindInferenceLambda_6989586621679868263Sym2+Lambda_6989586621679868263Sym2KindInferenceLambda_6989586621679868263Sym3Fmap_6989586621679868243Sym0)Fmap_6989586621679868243Sym0KindInferenceFmap_6989586621679868243Sym1)Fmap_6989586621679868243Sym1KindInferenceFmap_6989586621679868243Sym2Fmap_6989586621679868243 TFHelper_6989586621679868231Sym0-TFHelper_6989586621679868231Sym0KindInference TFHelper_6989586621679868231Sym1-TFHelper_6989586621679868231Sym1KindInference TFHelper_6989586621679868231Sym2TFHelper_6989586621679868231Pure_6989586621679868221Sym0)Pure_6989586621679868221Sym0KindInferencePure_6989586621679868221Sym1Pure_6989586621679868221 TFHelper_6989586621679868210Sym0-TFHelper_6989586621679868210Sym0KindInference TFHelper_6989586621679868210Sym1-TFHelper_6989586621679868210Sym1KindInference TFHelper_6989586621679868210Sym2TFHelper_6989586621679868210 TFHelper_6989586621679868198Sym0-TFHelper_6989586621679868198Sym0KindInference TFHelper_6989586621679868198Sym1-TFHelper_6989586621679868198Sym1KindInference TFHelper_6989586621679868198Sym2TFHelper_6989586621679868198 TFHelper_6989586621679868186Sym0-TFHelper_6989586621679868186Sym0KindInference TFHelper_6989586621679868186Sym1-TFHelper_6989586621679868186Sym1KindInference TFHelper_6989586621679868186Sym2TFHelper_6989586621679868186 TFHelper_6989586621679868174Sym0-TFHelper_6989586621679868174Sym0KindInference TFHelper_6989586621679868174Sym1-TFHelper_6989586621679868174Sym1KindInference TFHelper_6989586621679868174Sym2TFHelper_6989586621679868174 TFHelper_6989586621679868155Sym0-TFHelper_6989586621679868155Sym0KindInference TFHelper_6989586621679868155Sym1-TFHelper_6989586621679868155Sym1KindInference TFHelper_6989586621679868155Sym2TFHelper_6989586621679868155Lambda_6989586621679868163Sym0+Lambda_6989586621679868163Sym0KindInferenceLambda_6989586621679868163Sym1+Lambda_6989586621679868163Sym1KindInferenceLambda_6989586621679868163Sym2+Lambda_6989586621679868163Sym2KindInferenceLambda_6989586621679868163Sym3Fmap_6989586621679868143Sym0)Fmap_6989586621679868143Sym0KindInferenceFmap_6989586621679868143Sym1)Fmap_6989586621679868143Sym1KindInferenceFmap_6989586621679868143Sym2Fmap_6989586621679868143 TFHelper_6989586621679868131Sym0-TFHelper_6989586621679868131Sym0KindInference TFHelper_6989586621679868131Sym1-TFHelper_6989586621679868131Sym1KindInference TFHelper_6989586621679868131Sym2TFHelper_6989586621679868131Pure_6989586621679868121Sym0)Pure_6989586621679868121Sym0KindInferencePure_6989586621679868121Sym1Pure_6989586621679868121min_max_Product_Sum_Any_All_Max_Sym0Max_Sym0KindInferenceMax_Sym1Max_Sym1KindInferenceMax_Sym2Min_Sym0Min_Sym0KindInferenceMin_Sym1Min_Sym1KindInferenceMin_Sym2sMin_sMax_all_any_sum_product_ Product_Sym0Product_Sym0KindInference Product_Sym1Sum_Sym0Sum_Sym0KindInferenceSum_Sym1Any_Sym0Any_Sym0KindInferenceAny_Sym1All_Sym0All_Sym0KindInferenceAll_Sym1sAll_sAny_sSum_ sProduct_Case_6989586621679978186Case_6989586621679978206Case_6989586621679978220Case_6989586621679978238Case_6989586621679978285Case_6989586621679978308Case_6989586621679978325Case_6989586621679978332Case_6989586621679978387Case_6989586621679978401Case_6989586621679978420Case_6989586621679978429Case_6989586621679978436Case_6989586621679978463Case_6989586621679978472Case_6989586621679978479Lambda_6989586621679978498Case_6989586621679978507Case_6989586621679978531Case_6989586621679978545Lambda_6989586621679978570Lambda_6989586621679978605Case_6989586621679978608Case_6989586621679978660Case_6989586621679978690Case_6989586621679978720Case_6989586621679978744Case_6989586621679978783Lambda_6989586621679978824Case_6989586621679978828Lambda_6989586621679978853Case_6989586621679978857Lambda_6989586621679978880Case_6989586621679978884Lambda_6989586621679978905Case_6989586621679978909Lambda_6989586621679978928Case_6989586621679978932Lambda_6989586621679978949Case_6989586621679978953Case_6989586621679979048Case_6989586621679979055Case_6989586621679979069Case_6989586621679979098Case_6989586621679979106Case_6989586621679979118Case_6989586621679979126Case_6989586621679979162Case_6989586621679979170Case_6989586621679979182Case_6989586621679979190Case_6989586621679979221Case_6989586621679979242Case_6989586621679979263Case_6989586621679979394Case_6989586621679979406Case_6989586621679979441Case_6989586621680097974Case_6989586621680097980Case_6989586621680097982NonEmptySubsequences PrependToAllSelectElem_byHeadSym0KindInferenceTailSym0KindInferenceInitSym0KindInferenceNullSym0KindInferenceReverseSym0KindInferenceIntersperseSym0KindInferenceIntersperseSym1KindInferenceIntercalateSym0KindInferenceIntercalateSym1KindInferenceSubsequencesSym0KindInferenceNonEmptySubsequencesSym0%NonEmptySubsequencesSym0KindInferenceNonEmptySubsequencesSym1PrependToAllSym0PrependToAllSym0KindInferencePrependToAllSym1PrependToAllSym1KindInferencePrependToAllSym2PermutationsSym0KindInferenceFoldl'Sym0KindInferenceFoldl'Sym1KindInferenceFoldl'Sym2KindInferenceFoldl1Sym0KindInferenceFoldl1Sym1KindInferenceFoldl1'Sym0KindInferenceFoldl1'Sym1KindInferenceFoldr1Sym0KindInferenceFoldr1Sym1KindInferenceConcatSym0KindInferenceConcatMapSym0KindInferenceConcatMapSym1KindInferenceAndSym0KindInferenceOrSym0KindInferenceAllSym1KindInferenceAnySym1KindInferenceScanlSym0KindInferenceScanlSym1KindInferenceScanlSym2KindInferenceScanl1Sym0KindInferenceScanl1Sym1KindInferenceScanrSym0KindInferenceScanrSym1KindInferenceScanrSym2KindInferenceScanr1Sym0KindInferenceScanr1Sym1KindInferenceMapAccumLSym0KindInferenceMapAccumLSym1KindInferenceMapAccumLSym2KindInferenceMapAccumRSym0KindInferenceMapAccumRSym1KindInferenceMapAccumRSym2KindInferenceUnfoldrSym0KindInferenceUnfoldrSym1KindInferenceInitsSym0KindInferenceTailsSym0KindInferenceIsPrefixOfSym0KindInferenceIsPrefixOfSym1KindInferenceIsSuffixOfSym0KindInferenceIsSuffixOfSym1KindInferenceIsInfixOfSym0KindInferenceIsInfixOfSym1KindInferenceElemSym0KindInferenceElemSym1KindInferenceNotElemSym0KindInferenceNotElemSym1KindInferenceZipSym0KindInferenceZipSym1KindInferenceZip3Sym0KindInferenceZip3Sym1KindInferenceZip3Sym2KindInferenceZipWithSym0KindInferenceZipWithSym1KindInferenceZipWithSym2KindInferenceZipWith3Sym0KindInferenceZipWith3Sym1KindInferenceZipWith3Sym2KindInferenceZipWith3Sym3KindInferenceUnzipSym0KindInferenceUnzip3Sym0KindInferenceUnzip4Sym0KindInferenceUnzip5Sym0KindInferenceUnzip6Sym0KindInferenceUnzip7Sym0KindInferenceUnlinesSym0KindInferenceUnwordsSym0KindInferenceDeleteSym0KindInferenceDeleteSym1KindInference :\\@#@$### :\\@#@$$###DeleteBySym0KindInferenceDeleteBySym1KindInferenceDeleteBySym2KindInferenceDeleteFirstsBySym0KindInferenceDeleteFirstsBySym1KindInferenceDeleteFirstsBySym2KindInferenceSortBySym0KindInferenceSortBySym1KindInferenceInsertBySym0KindInferenceInsertBySym1KindInferenceInsertBySym2KindInferenceMaximumBySym0KindInferenceMaximumBySym1KindInferenceMinimumBySym0KindInferenceMinimumBySym1KindInferenceFilterSym0KindInferenceFilterSym1KindInferenceFindSym0KindInferenceFindSym1KindInferenceElemIndexSym0KindInferenceElemIndexSym1KindInferenceElemIndicesSym0KindInferenceElemIndicesSym1KindInferenceFindIndexSym0KindInferenceFindIndexSym1KindInferenceFindIndicesSym0KindInferenceFindIndicesSym1KindInferenceIntersectSym0KindInferenceIntersectSym1KindInferenceIntersectBySym0KindInferenceIntersectBySym1KindInferenceIntersectBySym2KindInferenceTakeWhileSym0KindInferenceTakeWhileSym1KindInferenceDropWhileSym0KindInferenceDropWhileSym1KindInferenceDropWhileEndSym0KindInferenceDropWhileEndSym1KindInferenceSpanSym0KindInferenceSpanSym1KindInferenceBreakSym0KindInferenceBreakSym1KindInferenceTakeSym0KindInferenceTakeSym1KindInferenceDropSym0KindInferenceDropSym1KindInferenceSplitAtSym0KindInferenceSplitAtSym1KindInferenceGroupSym0KindInferenceMaximumSym0KindInferenceMinimumSym0KindInferenceInsertSym0KindInferenceInsertSym1KindInferenceSortSym0KindInferenceGroupBySym0KindInferenceGroupBySym1KindInferenceLookupSym0KindInferenceLookupSym1KindInferencePartitionSym0KindInferencePartitionSym1KindInference SelectSym0SelectSym0KindInference SelectSym1SelectSym1KindInference SelectSym2SelectSym2KindInference SelectSym3LengthSym0KindInferenceReplicateSym0KindInferenceReplicateSym1KindInferenceTransposeSym0KindInference :!!@#@$### :!!@#@$$###NubSym0KindInferenceNubBySym0KindInferenceNubBySym1KindInference Elem_bySym0Elem_bySym0KindInference Elem_bySym1Elem_bySym1KindInference Elem_bySym2Elem_bySym2KindInference Elem_bySym3UnionBySym0KindInferenceUnionBySym1KindInferenceUnionBySym2KindInferenceUnionSym0KindInferenceUnionSym1KindInferenceGenericLengthSym0KindInferenceLet6989586621679979512Init'Let6989586621679979512Init'Sym0,Let6989586621679979512Init'Sym0KindInferenceLet6989586621679979512Init'Sym1,Let6989586621679979512Init'Sym1KindInferenceLet6989586621679979512Init'Sym2,Let6989586621679979512Init'Sym2KindInferenceLet6989586621679979512Init'Sym3,Let6989586621679979512Init'Sym3KindInferenceLet6989586621679979512Init'Sym4Let6989586621679979496RevLet6989586621679979496RevSym0*Let6989586621679979496RevSym0KindInferenceLet6989586621679979496RevSym1*Let6989586621679979496RevSym1KindInferenceLet6989586621679979496RevSym2*Let6989586621679979496RevSym2KindInferenceLet6989586621679979496RevSym3Let6989586621679979468FLet6989586621679979468FSym0(Let6989586621679979468FSym0KindInferenceLet6989586621679979468FSym1(Let6989586621679979468FSym1KindInferenceLet6989586621679979468FSym2(Let6989586621679979468FSym2KindInferenceLet6989586621679979468FSym3(Let6989586621679979468FSym3KindInferenceLet6989586621679979468FSym4Let6989586621679979362PermsLet6989586621679979362PermsSym0,Let6989586621679979362PermsSym0KindInferenceLet6989586621679979362PermsSym1,Let6989586621679979362PermsSym1KindInferenceLet6989586621679979362PermsSym2,Let6989586621679979362PermsSym2KindInferenceLet6989586621679979362PermsSym3 Let6989586621679979371Interleave!Let6989586621679979371Interleave'$Let6989586621679979371InterleaveSym01Let6989586621679979371InterleaveSym0KindInference$Let6989586621679979371InterleaveSym11Let6989586621679979371InterleaveSym1KindInference$Let6989586621679979371InterleaveSym21Let6989586621679979371InterleaveSym2KindInference$Let6989586621679979371InterleaveSym31Let6989586621679979371InterleaveSym3KindInference$Let6989586621679979371InterleaveSym41Let6989586621679979371InterleaveSym4KindInference$Let6989586621679979371InterleaveSym51Let6989586621679979371InterleaveSym5KindInference$Let6989586621679979371InterleaveSym6%Let6989586621679979371Interleave'Sym02Let6989586621679979371Interleave'Sym0KindInference%Let6989586621679979371Interleave'Sym12Let6989586621679979371Interleave'Sym1KindInference%Let6989586621679979371Interleave'Sym22Let6989586621679979371Interleave'Sym2KindInference%Let6989586621679979371Interleave'Sym32Let6989586621679979371Interleave'Sym3KindInference%Let6989586621679979371Interleave'Sym42Let6989586621679979371Interleave'Sym4KindInference%Let6989586621679979371Interleave'Sym52Let6989586621679979371Interleave'Sym5KindInference%Let6989586621679979371Interleave'Sym62Let6989586621679979371Interleave'Sym6KindInference%Let6989586621679979371Interleave'Sym7+Let6989586621679979436X_6989586621679979437Let6989586621679979436Zs/Let6989586621679979436X_6989586621679979437Sym0