Singletons/T163.hs:0:0:: Splicing declarations singletons [d| data a + b = L a | R b |] ======> data (+) a b = L a | R b type LSym0 :: forall a b. (~>) a ((+) a b) data LSym0 :: (~>) a ((+) a b) where LSym0KindInference :: SameKind (Apply LSym0 arg) (LSym1 arg) => LSym0 a0123456789876543210 type instance Apply LSym0 a0123456789876543210 = L a0123456789876543210 instance SuppressUnusedWarnings LSym0 where suppressUnusedWarnings = snd ((,) LSym0KindInference ()) type LSym1 :: forall a b. a -> (+) a b type family LSym1 @a @b (a0123456789876543210 :: a) :: (+) a b where LSym1 a0123456789876543210 = L a0123456789876543210 type RSym0 :: forall a b. (~>) b ((+) a b) data RSym0 :: (~>) b ((+) a b) where RSym0KindInference :: SameKind (Apply RSym0 arg) (RSym1 arg) => RSym0 a0123456789876543210 type instance Apply RSym0 a0123456789876543210 = R a0123456789876543210 instance SuppressUnusedWarnings RSym0 where suppressUnusedWarnings = snd ((,) RSym0KindInference ()) type RSym1 :: forall a b. b -> (+) a b type family RSym1 @a @b (a0123456789876543210 :: b) :: (+) a b where RSym1 a0123456789876543210 = R a0123456789876543210 data (%+) :: forall a b. (+) a b -> Type where SL :: forall a b (n :: a). (Sing n) -> (%+) (L n :: (+) a b) SR :: forall a b (n :: b). (Sing n) -> (%+) (R n :: (+) a b) type instance Sing @((+) a b) = (%+) instance (SingKind a, SingKind b) => SingKind ((+) a b) where type Demote ((+) a b) = (+) (Demote a) (Demote b) fromSing (SL b) = L (fromSing b) fromSing (SR b) = R (fromSing b) toSing (L (b :: Demote a)) = case toSing b :: SomeSing a of SomeSing c -> SomeSing (SL c) toSing (R (b :: Demote b)) = case toSing b :: SomeSing b of SomeSing c -> SomeSing (SR c) instance SingI n => SingI (L (n :: a)) where sing = SL sing instance SingI1 L where liftSing = SL instance SingI (LSym0 :: (~>) a ((+) a b)) where sing = singFun1 @LSym0 SL instance SingI n => SingI (R (n :: b)) where sing = SR sing instance SingI1 R where liftSing = SR instance SingI (RSym0 :: (~>) b ((+) a b)) where sing = singFun1 @RSym0 SR