{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE DeriveGeneric #-} module Main (main) where import Test.QuickCheck (Gen, Arbitrary(..), choose, elements) import Test.HUnit (Assertion,(@?=)) import Test.Framework (defaultMain, testGroup, Test) import Test.Framework.Providers.QuickCheck2 (testProperty) import Test.Framework.Providers.HUnit (testCase) import Data.ByteString (ByteString) import Data.Text (Text) import GHC.Generics (Generic) import Data.Either.Combinators import Colonnade.Types import Siphon.Types import Data.Functor.Identity import Data.Functor.Contravariant (contramap) import Data.Functor.Contravariant.Divisible (divided,conquered) import qualified Data.Text as Text import qualified Data.ByteString.Builder as Builder import qualified Data.ByteString.Lazy as LByteString import qualified Data.ByteString as ByteString import qualified Data.ByteString.Char8 as BC8 import qualified Colonnade.Decoding as Decoding import qualified Colonnade.Encoding as Encoding import qualified Colonnade.Decoding.ByteString.Char8 as CDB import qualified Colonnade.Encoding.ByteString.Char8 as CEB import qualified Colonnade.Decoding.Text as CDT import qualified Colonnade.Encoding.Text as CET import qualified Siphon.Encoding as SE import qualified Siphon.Decoding as SD import qualified Siphon.Content as SC import qualified Pipes.Prelude as Pipes import Pipes main :: IO () main = defaultMain tests tests :: [Test] tests = [ testGroup "ByteString encode/decode" [ testCase "Headless Encoding (int,char,bool)" $ runTestScenario SC.byteStringChar8 SE.pipe encodingA "4,c,false\n" , testProperty "Headless Isomorphism (int,char,bool)" $ propIsoPipe $ (SE.pipe SC.byteStringChar8 encodingA) >-> (void $ SD.headlessPipe SC.byteStringChar8 decodingA) , testCase "Headed Encoding (int,char,bool)" $ runTestScenario SC.byteStringChar8 SE.headedPipe encodingB $ ByteString.concat [ "number,letter,boolean\n" , "4,c,false\n" ] , testCase "Headed Encoding (int,char,bool) monoidal building" $ runTestScenario SC.byteStringChar8 SE.headedPipe encodingC $ ByteString.concat [ "boolean,letter\n" , "false,c\n" ] , testProperty "Headed Isomorphism (int,char,bool)" $ propIsoPipe $ (SE.headedPipe SC.byteStringChar8 encodingB) >-> (void $ SD.headedPipe SC.byteStringChar8 decodingB) ] , testGroup "Text encode/decode" [ testCase "Headless Encoding (int,char,bool)" $ runTestScenario SC.text SE.pipe encodingW "4,c,false\n" , testCase "Headless Encoding (Foo,Foo,Foo)" $ runCustomTestScenario SC.text SE.pipe encodingY (FooA,FooA,FooC) "Simple,Simple,\"More\"\"Escaped,\"\"\"\"Chars\"\n" , testProperty "Headless Isomorphism (Foo,Foo,Foo)" $ propIsoPipe $ (SE.pipe SC.text encodingY) >-> (void $ SD.headlessPipe SC.text decodingY) ] ] data Foo = FooA | FooB | FooC deriving (Generic,Eq,Ord,Show,Read,Bounded,Enum) instance Arbitrary Foo where arbitrary = elements [minBound..maxBound] fooToString :: Foo -> String fooToString x = case x of FooA -> "Simple" FooB -> "With,Escaped\nChars" FooC -> "More\"Escaped,\"\"Chars" encodeFoo :: (String -> c) -> Foo -> c encodeFoo f = f . fooToString fooFromString :: String -> Either String Foo fooFromString x = case x of "Simple" -> Right FooA "With,Escaped\nChars" -> Right FooB "More\"Escaped,\"\"Chars" -> Right FooC _ -> Left "failed to decode Foo" decodeFoo :: (c -> String) -> c -> Either String Foo decodeFoo f = fooFromString . f decodingA :: Decoding Headless ByteString (Int,Char,Bool) decodingA = (,,) <$> Decoding.headless CDB.int <*> Decoding.headless CDB.char <*> Decoding.headless CDB.bool decodingB :: Decoding Headed ByteString (Int,Char,Bool) decodingB = (,,) <$> Decoding.headed "number" CDB.int <*> Decoding.headed "letter" CDB.char <*> Decoding.headed "boolean" CDB.bool encodingA :: Encoding Headless ByteString (Int,Char,Bool) encodingA = contramap tripleToPairs $ divided (Encoding.headless CEB.int) $ divided (Encoding.headless CEB.char) $ divided (Encoding.headless CEB.bool) $ conquered encodingW :: Encoding Headless Text (Int,Char,Bool) encodingW = contramap tripleToPairs $ divided (Encoding.headless CET.int) $ divided (Encoding.headless CET.char) $ divided (Encoding.headless CET.bool) $ conquered encodingY :: Encoding Headless Text (Foo,Foo,Foo) encodingY = contramap tripleToPairs $ divided (Encoding.headless $ encodeFoo Text.pack) $ divided (Encoding.headless $ encodeFoo Text.pack) $ divided (Encoding.headless $ encodeFoo Text.pack) $ conquered decodingY :: Decoding Headless Text (Foo,Foo,Foo) decodingY = (,,) <$> Decoding.headless (decodeFoo Text.unpack) <*> Decoding.headless (decodeFoo Text.unpack) <*> Decoding.headless (decodeFoo Text.unpack) encodingB :: Encoding Headed ByteString (Int,Char,Bool) encodingB = contramap tripleToPairs $ divided (Encoding.headed "number" CEB.int) $ divided (Encoding.headed "letter" CEB.char) $ divided (Encoding.headed "boolean" CEB.bool) $ conquered encodingC :: Encoding Headed ByteString (Int,Char,Bool) encodingC = mconcat [ contramap thd3 $ Encoding.headed "boolean" CEB.bool , contramap snd3 $ Encoding.headed "letter" CEB.char ] tripleToPairs :: (a,b,c) -> (a,(b,(c,()))) tripleToPairs (a,b,c) = (a,(b,(c,()))) propIsoPipe :: Eq a => Pipe a a Identity () -> [a] -> Bool propIsoPipe p as = (Pipes.toList $ each as >-> p) == as runTestScenario :: (Monoid c, Eq c, Show c) => Siphon c -> (Siphon c -> Encoding f c (Int,Char,Bool) -> Pipe (Int,Char,Bool) c Identity ()) -> Encoding f c (Int,Char,Bool) -> c -> Assertion runTestScenario s p e c = ( mconcat $ Pipes.toList $ Pipes.yield (4,'c',False) >-> p s e ) @?= c runCustomTestScenario :: (Monoid c, Eq c, Show c) => Siphon c -> (Siphon c -> Encoding f c a -> Pipe a c Identity ()) -> Encoding f c a -> a -> c -> Assertion runCustomTestScenario s p e a c = ( mconcat $ Pipes.toList $ Pipes.yield a >-> p s e ) @?= c -- testEncodingA :: Assertion -- testEncodingA = runTestScenario encodingA "4,c,false\n" propEncodeDecodeIso :: Eq a => (a -> b) -> (b -> Maybe a) -> a -> Bool propEncodeDecodeIso f g a = g (f a) == Just a propMatching :: Eq b => (a -> b) -> (a -> b) -> a -> Bool propMatching f g a = f a == g a -- | Take the first item out of a 3 element tuple fst3 :: (a,b,c) -> a fst3 (a,b,c) = a -- | Take the second item out of a 3 element tuple snd3 :: (a,b,c) -> b snd3 (a,b,c) = b -- | Take the third item out of a 3 element tuple thd3 :: (a,b,c) -> c thd3 (a,b,c) = c