-- | Sparse Matrix. -- -- Copyright: (c) 2009 University of Kansas -- License: BSD3 -- -- Maintainer: Andy Gill -- Stability: unstable -- Portability: ghc {-# LANGUAGE TypeFamilies, RankNTypes, FlexibleInstances, ScopedTypeVariables, UndecidableInstances, MultiParamTypeClasses, TypeOperators, DataKinds #-} module Data.Sized.Sparse.Matrix where import Data.Array.Base as B import Data.Ix import Data.Sized.Fin as X import qualified Data.Sized.Matrix as M import qualified Data.Map as Map import Data.Map (Map) import qualified Data.Set as Set import Data.Set (Set) import Control.Applicative data SpMatrix ix a = SpMatrix a (Map ix a) instance Functor (SpMatrix ix) where fmap f (SpMatrix d mp) = SpMatrix (f d) (fmap f mp) -- 'fromAssocList' generates a sparse matrix. fromAssocList :: (Ord i, Eq a) => a -> [(i,a)] -> SpMatrix i a fromAssocList d xs = SpMatrix d (Map.fromList [ (i,a) | (i,a) <- xs, a /= d ]) toAssocList :: (SpMatrix i a) -> (a,[(i,a)]) toAssocList (SpMatrix d mp) = (d,Map.toList mp) -- | 'getElem' looks up an element in the sparse matrix. If the element is not found -- in the sparse matrix, 'getElem' returns the default value. getElem :: (Ord ix) => SpMatrix ix a -> ix -> a getElem (SpMatrix d sm) ix = Map.findWithDefault d ix sm fill :: (Bounded ix, Ix ix) => SpMatrix ix a -> M.Matrix ix a fill sm = M.forAll $ \ i -> getElem sm i -- Might be just internal, because nothing else leaks defaults. prune :: (Bounded ix, Ix ix, Eq a) => a -> SpMatrix ix a -> SpMatrix ix a prune d sm@(SpMatrix d' m) | d == d' = SpMatrix d (Map.filter (/= d) m) | otherwise = sparse d (fill sm) -- it might be possible to do better; think about it -- | Make a Matrix sparse, with a default 'zero' value. sparse :: (Bounded ix, Ix ix, Eq a) => a -> M.Matrix ix a -> SpMatrix ix a sparse d other = SpMatrix d (Map.fromList [ (i,v) | (i,v) <- assocs other, v /= d ]) mm :: (Bounded m, Ix m, Bounded n, Ix n, Bounded m', Ix m', Bounded n', Ix n', n ~ m', Num a, Eq a) => SpMatrix (m,n) a -> SpMatrix (m',n') a -> SpMatrix (m,n') a mm s1 s2 = SpMatrix 0 mp where mp = Map.fromList [ ((x,y),v) | (x,y) <- X.universe , let s = (rs B.! x) `Set.intersection` (cs B.! y) , not (Set.null s) , let v = foldb1 (+) [(getElem s1 (x,k)) * (getElem s2 (k,y)) | k <- Set.toList s ] , v /= 0 ] (SpMatrix _ mp1) = prune 0 s1 (SpMatrix _ mp2) = prune 0 s2 rs = rowSets (Map.keysSet mp1) cs = columnSets (Map.keysSet mp2) foldb1 _ [x] = x foldb1 f xs = foldb1 f (take len_before xs) `f` foldb1 f (drop len_before xs) where len = length xs len_before = len `div` 2 rowSets :: (Bounded a, Ix a, Ord b) => Set (a,b) -> M.Matrix a (Set b) rowSets set = B.accum f (pure Set.empty) (Set.toList set) where f set' e = Set.insert e set' columnSets :: (Bounded b, Ix b, Ord a) => Set (a,b) -> M.Matrix b (Set a) columnSets = rowSets . Set.map (\ (a,b) -> (b,a)) instance (Bounded i, Ix i) => Applicative (SpMatrix i) where pure a = SpMatrix a (Map.empty) sm1@(SpMatrix d1 m1) <*> sm2@(SpMatrix d2 m2) = SpMatrix (d1 d2) (Map.fromList [ (k, (getElem sm1 k) (getElem sm2 k)) | k <- Set.toList keys ]) where keys = Map.keysSet m1 `Set.union` Map.keysSet m2 instance (Show a, Show ix, Bounded ix, Ix ix) => Show (SpMatrix ix a) where show m = show (fill m) transpose :: (Bounded x, Ix x, Bounded y, Ix y, Eq a) => SpMatrix (x,y) a -> SpMatrix (y,x) a transpose (SpMatrix d m) = SpMatrix d (Map.fromList [ ((y,x),a) | ((x,y),a) <- Map.assocs m ]) zipWith :: (Bounded x, Ix x) => (a -> b -> c) -> SpMatrix x a -> SpMatrix x b -> SpMatrix x c zipWith f m1 m2 = pure f <*> m1 <*> m2