------------------------------------------------------------------------ -- | -- Module : Data.Datamining.Clustering.SOMInternal -- Copyright : (c) Amy de Buitléir 2012-2014 -- License : BSD-style -- Maintainer : amy@nualeargais.ie -- Stability : experimental -- Portability : portable -- -- A module containing private @SOM@ internals. Most developers should -- use @SOM@ instead. This module is subject to change without notice. -- ------------------------------------------------------------------------ {-# LANGUAGE TypeFamilies, FlexibleContexts, FlexibleInstances, MultiParamTypeClasses, DeriveGeneric #-} module Data.Datamining.Clustering.SOMInternal where import qualified Data.Foldable as F (Foldable, foldr) import Data.List (foldl', minimumBy) import Data.Ord (comparing) import qualified Math.Geometry.Grid as G (Grid(..)) import qualified Math.Geometry.GridMap as GM (GridMap(..)) import Data.Datamining.Pattern (Pattern(..)) import Data.Datamining.Clustering.Classifier(Classifier(..)) import GHC.Generics (Generic) import Prelude hiding (lookup) -- | A function used to adjust the models in a classifier. class LearningFunction f where type LearningRate f -- | @'rate' f t d@ returns the learning rate for a node. -- The parameter @f@ is the learning function. -- The parameter @t@ indicates how many patterns (or pattern -- batches) have previously been presented to the classifier. -- Typically this is used to make the learning rate decay over time. -- The parameter @d@ is the grid distance from the node being -- updated to the BMU (Best Matching Unit). -- The output is the learning rate for that node (the amount by -- which the node's model should be updated to match the target). -- The learning rate should be between zero and one. rate :: f -> LearningRate f -> LearningRate f -> LearningRate f -- | A typical learning function for classifiers. -- @'DecayingGaussian' r0 rf w0 wf tf@ returns a bell curve-shaped -- function. At time zero, the maximum learning rate (applied to the -- BMU) is @r0@, and the neighbourhood width is @w0@. Over time the -- bell curve shrinks and the learning rate tapers off, until at time -- @tf@, the maximum learning rate (applied to the BMU) is @rf@, -- and the neighbourhood width is @wf@. Normally the parameters -- should be chosen such that: -- -- * 0 < rf << r0 < 1 -- -- * 0 < wf << w0 -- -- * 0 < tf -- -- where << means "is much smaller than" (not the Haskell @<<@ -- operator!) data DecayingGaussian a = DecayingGaussian a a a a a deriving (Eq, Show, Generic) instance (Floating a, Fractional a, Num a) => LearningFunction (DecayingGaussian a) where type LearningRate (DecayingGaussian a) = a rate (DecayingGaussian r0 rf w0 wf tf) t d = r * exp (-(d*d)/(2*w*w)) where a = t/tf r = r0 * ((rf/r0)**a) w = w0 * ((wf/w0)**a) -- | A learning function that only updates the BMU and has a constant -- learning rate. data StepFunction a = StepFunction a deriving (Eq, Show, Generic) instance (Fractional a, Eq a) => LearningFunction (StepFunction a) where type LearningRate (StepFunction a) = a rate (StepFunction r) _ d = if d == 0 then r else 0.0 -- | A learning function that updates all nodes with the same, constant -- learning rate. This can be useful for testing. data ConstantFunction a = ConstantFunction a deriving (Eq, Show, Generic) instance (Fractional a) => LearningFunction (ConstantFunction a) where type LearningRate (ConstantFunction a) = a rate (ConstantFunction r) _ _ = r -- | A Self-Organising Map (SOM). -- -- Although @SOM@ implements @GridMap@, most users will only need the -- interface provided by @Data.Datamining.Clustering.Classifier@. If -- you chose to use the @GridMap@ functions, please note: -- -- 1. The functions @adjust@, and @adjustWithKey@ do not increment the -- counter. You can do so manually with @incrementCounter@. -- -- 2. The functions @map@ and @mapWithKey@ are not implemented (they -- just return an @error@). It would be problematic to implement -- them because the input SOM and the output SOM would have to have -- the same @Metric@ type. data SOM f t gm k p = SOM { -- | Maps patterns to tiles in a regular grid. -- In the context of a SOM, the tiles are called "nodes" gridMap :: gm p, -- | The function used to update the nodes. learningFunction :: f, -- | A counter used as a "time" parameter. -- If you create the SOM with a counter value @0@, and don't -- directly modify it, then the counter will represent the number -- of patterns that this SOM has classified. counter :: t } deriving (Eq, Show, Generic) instance (F.Foldable gm) => F.Foldable (SOM f t gm k) where foldr f x g = F.foldr f x (gridMap g) instance (G.Grid (gm p)) => G.Grid (SOM f t gm k p) where type Index (SOM f t gm k p) = G.Index (gm p) type Direction (SOM f t gm k p) = G.Direction (gm p) indices = G.indices . gridMap distance = G.distance . gridMap neighbours = G.neighbours . gridMap contains = G.contains . gridMap viewpoint = G.viewpoint . gridMap directionTo = G.directionTo . gridMap tileCount = G.tileCount . gridMap null = G.null . gridMap nonNull = G.nonNull . gridMap instance (F.Foldable gm, GM.GridMap gm p, G.Grid (GM.BaseGrid gm p)) => GM.GridMap (SOM f t gm k) p where type BaseGrid (SOM f t gm k) p = GM.BaseGrid gm p toGrid = GM.toGrid . gridMap toMap = GM.toMap . gridMap mapWithKey = error "Not implemented" adjustWithKey f k s = s { gridMap=gm' } where gm = gridMap s gm' = GM.adjustWithKey f k gm currentLearningFunction :: (LearningFunction f, Metric p ~ LearningRate f, Num (LearningRate f), Integral t) => SOM f t gm k p -> (LearningRate f -> Metric p) currentLearningFunction s = rate (learningFunction s) (fromIntegral $ counter s) -- | Extracts the grid and current models from the SOM. -- A synonym for @'gridMap'@. toGridMap :: GM.GridMap gm p => SOM f t gm k p -> gm p toGridMap = gridMap adjustNode :: (Pattern p, G.Grid g, k ~ G.Index g, Num t) => g -> (t -> Metric p) -> p -> k -> k -> p -> p adjustNode g f target bmu k = makeSimilar target (f d) where d = fromIntegral $ G.distance g bmu k -- | Trains the specified node and the neighbourood around it to better -- match a target. -- Most users should use @train@, which automatically determines -- the BMU and trains it and its neighbourhood. trainNeighbourhood :: (Pattern p, G.Grid (gm p), GM.GridMap gm p, G.Index (GM.BaseGrid gm p) ~ G.Index (gm p), LearningFunction f, Metric p ~ LearningRate f, Num (LearningRate f), Integral t) => SOM f t gm k p -> G.Index (gm p) -> p -> SOM f t gm k p trainNeighbourhood s bmu target = s { gridMap=gm' } where gm = gridMap s gm' = GM.mapWithKey (adjustNode gm f target bmu) gm f = currentLearningFunction s incrementCounter :: Num t => SOM f t gm k p -> SOM f t gm k p incrementCounter s = s { counter=counter s + 1} justTrain :: (Ord (Metric p), Pattern p, G.Grid (gm p), GM.GridMap gm (Metric p), GM.GridMap gm p, G.Index (GM.BaseGrid gm (Metric p)) ~ G.Index (gm p), G.Index (GM.BaseGrid gm p) ~ G.Index (gm p), LearningFunction f, Metric p ~ LearningRate f, Num (LearningRate f), Integral t) => SOM f t gm k p -> p -> SOM f t gm k p justTrain s p = trainNeighbourhood s bmu p where ds = GM.toList . GM.map (p `difference`) $ gridMap s bmu = f ds f [] = error "SOM has no models" f xs = fst $ minimumBy (comparing snd) xs instance (GM.GridMap gm p, k ~ G.Index (GM.BaseGrid gm p), Pattern p, G.Grid (gm p), GM.GridMap gm (Metric p), k ~ G.Index (gm p), k ~ G.Index (GM.BaseGrid gm (Metric p)), Ord (Metric p), LearningFunction f, Metric p ~ LearningRate f, Num (LearningRate f), Integral t) => Classifier (SOM f t gm) k p where toList = GM.toList . gridMap numModels = G.tileCount . gridMap models = GM.elems . gridMap differences s p = GM.toList . GM.map (p `difference`) $ gridMap s trainBatch s = incrementCounter . foldl' justTrain s reportAndTrain s p = (bmu, ds, incrementCounter s') where ds = differences s p bmu = fst $ minimumBy (comparing snd) ds s' = trainNeighbourhood s bmu p