{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE Safe #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeOperators #-} #if __GLASGOW_HASKELL__ >= 810 {-# LANGUAGE StandaloneKindSignatures #-} #endif module Data.GADT.Internal where import Control.Applicative (Applicative (..)) import Data.Functor.Product (Product (..)) import Data.Functor.Sum (Sum (..)) import Data.Kind (Type) import Data.Maybe (isJust, isNothing) import Data.Monoid (Monoid (..)) import Data.Semigroup (Semigroup (..)) import Data.Type.Equality (TestEquality (..), (:~:) (..), (:~~:) (..)) import GHC.Generics ((:*:) (..), (:+:) (..)) import qualified Type.Reflection as TR #if __GLASGOW_HASKELL__ >= 810 import Data.Kind (Constraint) #endif -- $setup -- >>> :set -XKindSignatures -XGADTs -XTypeOperators -XStandaloneDeriving -XQuantifiedConstraints -- >>> import Data.Type.Equality -- >>> import Data.Functor.Sum -- >>> import Data.Maybe (isJust, isNothing) -- >>> import GHC.Generics -- |'Show'-like class for 1-type-parameter GADTs. @GShow t => ...@ is equivalent to something -- like @(forall a. Show (t a)) => ...@. The easiest way to create instances would probably be -- to write (or derive) an @instance Show (T a)@, and then simply say: -- -- > instance GShow t where gshowsPrec = defaultGshowsPrec #if __GLASGOW_HASKELL__ >= 810 type GShow :: (k -> Type) -> Constraint #endif class GShow t where gshowsPrec :: Int -> t a -> ShowS -- |If 'f' has a 'Show (f a)' instance, this function makes a suitable default -- implementation of 'gshowsPrec'. -- -- @since 1.0.4 defaultGshowsPrec :: Show (t a) => Int -> t a -> ShowS defaultGshowsPrec = showsPrec gshows :: GShow t => t a -> ShowS gshows = gshowsPrec (-1) gshow :: (GShow t) => t a -> String gshow x = gshows x "" instance GShow ((:~:) a) where gshowsPrec _ Refl = showString "Refl" -- | @since 1.0.4 instance GShow ((:~~:) a) where gshowsPrec _ HRefl = showString "HRefl" instance GShow TR.TypeRep where gshowsPrec = showsPrec -- -- | >>> gshow (InL Refl :: Sum ((:~:) Int) ((:~:) Bool) Int) -- "InL Refl" instance (GShow a, GShow b) => GShow (Sum a b) where gshowsPrec d = \s -> case s of InL x -> showParen (d > 10) (showString "InL " . gshowsPrec 11 x) InR x -> showParen (d > 10) (showString "InR " . gshowsPrec 11 x) -- | >>> gshow (Pair Refl Refl :: Product ((:~:) Int) ((:~:) Int) Int) -- "Pair Refl Refl" instance (GShow a, GShow b) => GShow (Product a b) where gshowsPrec d (Pair x y) = showParen (d > 10) $ showString "Pair " . gshowsPrec 11 x . showChar ' ' . gshowsPrec 11 y -- -- | >>> gshow (L1 Refl :: ((:~:) Int :+: (:~:) Bool) Int) -- "L1 Refl" -- -- @since 1.0.4 instance (GShow a, GShow b) => GShow (a :+: b) where gshowsPrec d = \s -> case s of L1 x -> showParen (d > 10) (showString "L1 " . gshowsPrec 11 x) R1 x -> showParen (d > 10) (showString "R1 " . gshowsPrec 11 x) -- | >>> gshow (Pair Refl Refl :: Product ((:~:) Int) ((:~:) Int) Int) -- "Refl :*: Refl" -- -- @since 1.0.4 instance (GShow a, GShow b) => GShow (a :*: b) where gshowsPrec d (x :*: y) = showParen (d > 6) $ gshowsPrec 6 x . showString " :*: " . gshowsPrec 6 y -- |@GReadS t@ is equivalent to @ReadS (forall b. (forall a. t a -> b) -> b)@, which is -- in turn equivalent to @ReadS (Exists t)@ (with @data Exists t where Exists :: t a -> Exists t@) #if __GLASGOW_HASKELL__ >= 810 type GReadS :: (k -> Type) -> Type #endif type GReadS t = String -> [(Some t, String)] getGReadResult :: Some tag -> (forall a. tag a -> b) -> b getGReadResult t k = withSome t k mkGReadResult :: tag a -> Some tag mkGReadResult = mkSome -- |'Read'-like class for 1-type-parameter GADTs. Unlike 'GShow', this one cannot be -- mechanically derived from a 'Read' instance because 'greadsPrec' must choose the phantom -- type based on the 'String' being parsed. #if __GLASGOW_HASKELL__ >= 810 type GRead :: (k -> Type) -> Constraint #endif class GRead t where greadsPrec :: Int -> GReadS t greads :: GRead t => GReadS t greads = greadsPrec (-1) gread :: GRead t => String -> (forall a. t a -> b) -> b gread s g = withSome (hd [f | (f, "") <- greads s]) g where hd (x:_) = x hd _ = error "gread: no parse" -- | -- -- >>> greadMaybe "InL Refl" mkSome :: Maybe (Some (Sum ((:~:) Int) ((:~:) Bool))) -- Just (mkSome (InL Refl)) -- -- >>> greadMaybe "L1 Refl" mkSome :: Maybe (Some ((:~:) Int :+: (:~:) Bool)) -- Just (mkSome (L1 Refl)) -- -- >>> greadMaybe "garbage" mkSome :: Maybe (Some ((:~:) Int)) -- Nothing -- greadMaybe :: GRead t => String -> (forall a. t a -> b) -> Maybe b greadMaybe s g = case [f | (f, "") <- greads s] of (x : _) -> Just (withSome x g) _ -> Nothing instance GRead ((:~:) a) where greadsPrec _ = readParen False (\s -> [ (S $ \k -> k (Refl :: a :~: a), t) | ("Refl", t) <- lex s ]) -- | @since 1.0.4 instance k1 ~ k2 => GRead ((:~~:) (a :: k1) :: k2 -> Type) where greadsPrec _ = readParen False (\s -> [ (S $ \k -> k (HRefl :: a :~~: a), t) | ("HRefl", t) <- lex s ]) instance (GRead a, GRead b) => GRead (Sum a b) where greadsPrec d s = readParen (d > 10) (\s1 -> [ (S $ \k -> withSome r (k . InL), t) | ("InL", s2) <- lex s1 , (r, t) <- greadsPrec 11 s2 ]) s ++ readParen (d > 10) (\s1 -> [ (S $ \k -> withSome r (k . InR), t) | ("InR", s2) <- lex s1 , (r, t) <- greadsPrec 11 s2 ]) s -- | @since 1.0.4 instance (GRead a, GRead b) => GRead (a :+: b) where greadsPrec d s = readParen (d > 10) (\s1 -> [ (S $ \k -> withSome r (k . L1), t) | ("L1", s2) <- lex s1 , (r, t) <- greadsPrec 11 s2 ]) s ++ readParen (d > 10) (\s1 -> [ (S $ \k -> withSome r (k . R1), t) | ("R1", s2) <- lex s1 , (r, t) <- greadsPrec 11 s2 ]) s ------------------------------------------------------------------------------- -- GEq ------------------------------------------------------------------------------- -- |A class for type-contexts which contain enough information -- to (at least in some cases) decide the equality of types -- occurring within them. -- -- This class is sometimes confused with 'TestEquality' from base. -- 'TestEquality' only checks /type equality/. -- -- Consider -- -- >>> data Tag a where TagInt1 :: Tag Int; TagInt2 :: Tag Int -- -- The correct @'TestEquality' Tag@ instance is -- -- >>> :{ -- instance TestEquality Tag where -- testEquality TagInt1 TagInt1 = Just Refl -- testEquality TagInt1 TagInt2 = Just Refl -- testEquality TagInt2 TagInt1 = Just Refl -- testEquality TagInt2 TagInt2 = Just Refl -- :} -- -- While we can define -- -- @ -- instance 'GEq' Tag where -- 'geq' = 'testEquality' -- @ -- -- this will mean we probably want to have -- -- @ -- instance 'Eq' Tag where -- _ '==' _ = True -- @ -- -- /Note:/ In the future version of @some@ package (to be released around GHC-9.6 / 9.8) the -- @forall a. Eq (f a)@ constraint will be added as a constraint to 'GEq', -- with a law relating 'GEq' and 'Eq': -- -- @ -- 'geq' x y = Just Refl ⇒ x == y = True ∀ (x :: f a) (y :: f b) -- x == y ≡ isJust ('geq' x y) ∀ (x, y :: f a) -- @ -- -- So, the more useful @'GEq' Tag@ instance would differentiate between -- different constructors: -- -- >>> :{ -- instance GEq Tag where -- geq TagInt1 TagInt1 = Just Refl -- geq TagInt1 TagInt2 = Nothing -- geq TagInt2 TagInt1 = Nothing -- geq TagInt2 TagInt2 = Just Refl -- :} -- -- which is consistent with a derived 'Eq' instance for 'Tag' -- -- >>> deriving instance Eq (Tag a) -- -- Note that even if @a ~ b@, the @'geq' (x :: f a) (y :: f b)@ may -- be 'Nothing' (when value terms are inequal). -- -- The consistency of 'GEq' and 'Eq' is easy to check by exhaustion: -- -- >>> let checkFwdGEq :: (forall a. Eq (f a), GEq f) => f a -> f b -> Bool; checkFwdGEq x y = case geq x y of Just Refl -> x == y; Nothing -> True -- >>> (checkFwdGEq TagInt1 TagInt1, checkFwdGEq TagInt1 TagInt2, checkFwdGEq TagInt2 TagInt1, checkFwdGEq TagInt2 TagInt2) -- (True,True,True,True) -- -- >>> let checkBwdGEq :: (Eq (f a), GEq f) => f a -> f a -> Bool; checkBwdGEq x y = if x == y then isJust (geq x y) else isNothing (geq x y) -- >>> (checkBwdGEq TagInt1 TagInt1, checkBwdGEq TagInt1 TagInt2, checkBwdGEq TagInt2 TagInt1, checkBwdGEq TagInt2 TagInt2) -- (True,True,True,True) -- #if __GLASGOW_HASKELL__ >= 810 type GEq :: (k -> Type) -> Constraint #endif class GEq f where -- |Produce a witness of type-equality, if one exists. -- -- A handy idiom for using this would be to pattern-bind in the Maybe monad, eg.: -- -- > extract :: GEq tag => tag a -> DSum tag -> Maybe a -- > extract t1 (t2 :=> x) = do -- > Refl <- geq t1 t2 -- > return x -- -- Or in a list comprehension: -- -- > extractMany :: GEq tag => tag a -> [DSum tag] -> [a] -- > extractMany t1 things = [ x | (t2 :=> x) <- things, Refl <- maybeToList (geq t1 t2)] -- -- (Making use of the 'DSum' type from in both examples) geq :: f a -> f b -> Maybe (a :~: b) -- |If 'f' has a 'GCompare' instance, this function makes a suitable default -- implementation of 'geq'. -- -- @since 1.0.4 defaultGeq :: GCompare f => f a -> f b -> Maybe (a :~: b) defaultGeq a b = case gcompare a b of GEQ -> Just Refl _ -> Nothing -- |If 'f' has a 'GEq' instance, this function makes a suitable default -- implementation of '(==)'. defaultEq :: GEq f => f a -> f b -> Bool defaultEq x y = isJust (geq x y) -- |If 'f' has a 'GEq' instance, this function makes a suitable default -- implementation of '(/=)'. defaultNeq :: GEq f => f a -> f b -> Bool defaultNeq x y = isNothing (geq x y) instance GEq ((:~:) a) where geq (Refl :: a :~: b) (Refl :: a :~: c) = Just (Refl :: b :~: c) -- | @since 1.0.4 instance GEq ((:~~:) a) where geq (HRefl :: a :~~: b) (HRefl :: a :~~: c) = Just (Refl :: b :~: c) instance (GEq a, GEq b) => GEq (Sum a b) where geq (InL x) (InL y) = geq x y geq (InR x) (InR y) = geq x y geq _ _ = Nothing instance (GEq a, GEq b) => GEq (Product a b) where geq (Pair x y) (Pair x' y') = do Refl <- geq x x' Refl <- geq y y' return Refl -- | @since 1.0.4 instance (GEq f, GEq g) => GEq (f :+: g) where geq (L1 x) (L1 y) = geq x y geq (R1 x) (R1 y) = geq x y geq _ _ = Nothing -- | @since 1.0.4 instance (GEq a, GEq b) => GEq (a :*: b) where geq (x :*: y) (x' :*: y') = do Refl <- geq x x' Refl <- geq y y' return Refl instance GEq TR.TypeRep where geq = testEquality ------------------------------------------------------------------------------- -- GCompare ------------------------------------------------------------------------------- -- This instance seems nice, but it's simply not right: -- -- > instance GEq StableName where -- > geq sn1 sn2 -- > | sn1 == unsafeCoerce sn2 -- > = Just (unsafeCoerce Refl) -- > | otherwise = Nothing -- -- Proof: -- -- > x <- makeStableName id :: IO (StableName (Int -> Int)) -- > y <- makeStableName id :: IO (StableName ((Int -> Int) -> Int -> Int)) -- > -- > let Just boom = geq x y -- > let coerce :: (a :~: b) -> a -> b; coerce Refl = id -- > -- > coerce boom (const 0) id 0 -- > let "Illegal Instruction" = "QED." -- -- The core of the problem is that 'makeStableName' only knows the closure -- it is passed to, not any type information. Together with the fact that -- the same closure has the same StableName each time 'makeStableName' is -- called on it, there is serious potential for abuse when a closure can -- be given many incompatible types. -- |A type for the result of comparing GADT constructors; the type parameters -- of the GADT values being compared are included so that in the case where -- they are equal their parameter types can be unified. #if __GLASGOW_HASKELL__ >= 810 type GOrdering :: k -> k -> Type #endif data GOrdering a b where GLT :: GOrdering a b GEQ :: GOrdering t t GGT :: GOrdering a b -- |TODO: Think of a better name -- -- This operation forgets the phantom types of a 'GOrdering' value. weakenOrdering :: GOrdering a b -> Ordering weakenOrdering GLT = LT weakenOrdering GEQ = EQ weakenOrdering GGT = GT instance Eq (GOrdering a b) where x == y = weakenOrdering x == weakenOrdering y instance Ord (GOrdering a b) where compare x y = compare (weakenOrdering x) (weakenOrdering y) instance Show (GOrdering a b) where showsPrec _ GGT = showString "GGT" showsPrec _ GEQ = showString "GEQ" showsPrec _ GLT = showString "GLT" instance GShow (GOrdering a) where gshowsPrec = showsPrec instance GRead (GOrdering a) where greadsPrec _ s = case con of "GGT" -> [(mkSome GGT, rest)] "GEQ" -> [(mkSome GEQ, rest)] "GLT" -> [(mkSome GLT, rest)] _ -> [] where (con, rest) = splitAt 3 s -- |Type class for comparable GADT-like structures. When 2 things are equal, -- must return a witness that their parameter types are equal as well ('GEQ'). #if __GLASGOW_HASKELL__ >= 810 type GCompare :: (k -> Type) -> Constraint #endif class GEq f => GCompare f where gcompare :: f a -> f b -> GOrdering a b instance GCompare ((:~:) a) where gcompare Refl Refl = GEQ -- | @since 1.0.4 instance GCompare ((:~~:) a) where gcompare HRefl HRefl = GEQ instance GCompare TR.TypeRep where gcompare t1 t2 = case testEquality t1 t2 of Just Refl -> GEQ Nothing -> case compare (TR.SomeTypeRep t1) (TR.SomeTypeRep t2) of LT -> GLT GT -> GGT EQ -> error "impossible: 'testEquality' and 'compare' \ \are inconsistent for TypeRep; report this \ \as a GHC bug" defaultCompare :: GCompare f => f a -> f b -> Ordering defaultCompare x y = weakenOrdering (gcompare x y) instance (GCompare a, GCompare b) => GCompare (Sum a b) where gcompare (InL x) (InL y) = gcompare x y gcompare (InL _) (InR _) = GLT gcompare (InR _) (InL _) = GGT gcompare (InR x) (InR y) = gcompare x y instance (GCompare a, GCompare b) => GCompare (Product a b) where gcompare (Pair x y) (Pair x' y') = case gcompare x x' of GLT -> GLT GGT -> GGT GEQ -> case gcompare y y' of GLT -> GLT GEQ -> GEQ GGT -> GGT -- | @since 1.0.4 instance (GCompare f, GCompare g) => GCompare (f :+: g) where gcompare (L1 x) (L1 y) = gcompare x y gcompare (L1 _) (R1 _) = GLT gcompare (R1 _) (L1 _) = GGT gcompare (R1 x) (R1 y) = gcompare x y -- | @since 1.0.4 instance (GCompare a, GCompare b) => GCompare (a :*: b) where gcompare (x :*: y) (x' :*: y') = case gcompare x x' of GLT -> GLT GGT -> GGT GEQ -> case gcompare y y' of GLT -> GLT GEQ -> GEQ GGT -> GGT ------------------------------------------------------------------------------- -- Some ------------------------------------------------------------------------------- -- | Existential. This is type is useful to hide GADTs' parameters. -- -- >>> data Tag :: * -> * where TagInt :: Tag Int; TagBool :: Tag Bool -- >>> instance GShow Tag where gshowsPrec _ TagInt = showString "TagInt"; gshowsPrec _ TagBool = showString "TagBool" -- >>> classify s = case s of "TagInt" -> [mkGReadResult TagInt]; "TagBool" -> [mkGReadResult TagBool]; _ -> [] -- >>> instance GRead Tag where greadsPrec _ s = [ (r, rest) | (con, rest) <- lex s, r <- classify con ] -- -- With Church-encoding youcan only use a functions: -- -- >>> let y = mkSome TagBool -- >>> y -- mkSome TagBool -- -- >>> withSome y $ \y' -> case y' of { TagInt -> "I"; TagBool -> "B" } :: String -- "B" -- -- or explicitly work with 'S' -- -- >>> let x = S $ \f -> f TagInt -- >>> x -- mkSome TagInt -- -- >>> case x of S f -> f $ \x' -> case x' of { TagInt -> "I"; TagBool -> "B" } :: String -- "I" -- -- The implementation of 'mapSome' is /safe/. -- -- >>> let f :: Tag a -> Tag a; f TagInt = TagInt; f TagBool = TagBool -- >>> mapSome f y -- mkSome TagBool -- -- but you can also use: -- -- >>> withSome y (mkSome . f) -- mkSome TagBool -- -- >>> read "Some TagBool" :: Some Tag -- mkSome TagBool -- -- >>> read "mkSome TagInt" :: Some Tag -- mkSome TagInt -- #if __GLASGOW_HASKELL__ >= 810 type Some :: (k -> Type) -> Type #endif newtype Some tag = S { -- | Eliminator. withSome :: forall r. (forall a. tag a -> r) -> r } type role Some representational -- | Constructor. mkSome :: tag a -> Some tag mkSome t = S (\f -> f t) -- | Map over argument. mapSome :: (forall x. f x -> g x) -> Some f -> Some g mapSome nt (S fx) = S (\f -> fx (f . nt)) -- | @'flip' 'withSome'@ foldSome :: (forall a. tag a -> b) -> Some tag -> b foldSome some (S thing) = thing some -- | Traverse over argument. traverseSome :: Functor m => (forall a. f a -> m (g a)) -> Some f -> m (Some g) traverseSome f x = withSome x $ \x' -> fmap mkSome (f x') -- | Monadic 'withSome'. -- -- @since 1.0.1 withSomeM :: Monad m => m (Some tag) -> (forall a. tag a -> m r) -> m r withSomeM m k = m >>= \s -> withSome s k ------------------------------------------------------------------------------- -- Church Some instances ------------------------------------------------------------------------------- instance GShow tag => Show (Some tag) where showsPrec p some = withSome some $ \thing -> showParen (p > 10) ( showString "mkSome " . gshowsPrec 11 thing ) instance GRead f => Read (Some f) where readsPrec p = readParen (p>10) $ \s -> [ (withSome withTag mkSome, rest') | (con, rest) <- lex s , con == "Some" || con == "mkSome" , (withTag, rest') <- greadsPrec 11 rest ] instance GEq tag => Eq (Some tag) where x == y = withSome x $ \x' -> withSome y $ \y' -> defaultEq x' y' instance GCompare tag => Ord (Some tag) where compare x y = withSome x $ \x' -> withSome y $ \y' -> defaultCompare x' y' instance Control.Applicative.Applicative m => Data.Semigroup.Semigroup (Some m) where m <> n = withSome m $ \m' -> withSome n $ \n' -> mkSome (m' *> n') instance Applicative m => Data.Monoid.Monoid (Some m) where mempty = mkSome (pure ()) mappend = (<>)