module Math.Spline.BezierCurve
( BezierCurve, bezierCurve, splitBezierCurve
, evalSpline
) where
import Math.Spline.BSpline
import Math.Spline.Class
import Math.Spline.Knots
import Control.Applicative
import Data.VectorSpace
data BezierCurve v = BezierCurve !Int [v] deriving (Eq, Ord)
bezierCurve :: [v] -> BezierCurve v
bezierCurve cs
| null cs = error "bezierCurve: no control points given"
| otherwise = BezierCurve (length cs 1) cs
instance Show v => Show (BezierCurve v) where
showsPrec p (BezierCurve _ cs) = showParen (p>10)
( showString "bezierCurve "
. showsPrec 11 cs
)
instance (VectorSpace v, Fractional (Scalar v), Ord (Scalar v)) => Spline BezierCurve v where
splineDomain (BezierCurve _ _) = Just (0,1)
evalSpline (BezierCurve _ cs) = head . last . deCasteljau cs
splineDegree (BezierCurve p _) = p
knotVector (BezierCurve p _) = fromList [(0, p+1), (1, p+1)]
toBSpline = bSpline <$> knotVector <*> controlPoints
instance Spline BezierCurve v => ControlPoints BezierCurve v where
controlPoints (BezierCurve _ cs) = cs
deCasteljau :: VectorSpace v => [v] -> Scalar v -> [[v]]
deCasteljau [] t = []
deCasteljau cs t = cs : deCasteljau (zipWith interp cs (tail cs)) t
where
interp x0 x1 = lerp x0 x1 t
splitBezierCurve :: VectorSpace v => BezierCurve v -> Scalar v -> (BezierCurve v, BezierCurve v)
splitBezierCurve (BezierCurve n cs) t =
( BezierCurve n (map head css)
, BezierCurve n (reverse (map last css))
) where css = deCasteljau cs t