h$*      !"#$%&'()None>splitmix-distributionsPure random generationsplitmix-distributionsRandom generatorwraps splitmix state-passing inside a * monaduseful for embedding random generation inside a larger effect stacksplitmix-distributionsSample in a monadic contextsplitmix-distributionsInitialize a splitmix random generator from system entropy (current time etc.) and sample from the PRNG.splitmix-distributionsSample a batchsplitmix-distributionsInitialize a splitmix random generator from system entropy (current time etc.) and sample n times from the PRNG.splitmix-distributions Pure samplingsplitmix-distributionsSample a batchsplitmix-distributionsBernoulli trial splitmix-distributions:A fair coin toss returns either value with probability 0.5 splitmix-distributionsMultinomial distribution NB : returns Nothing. if any of the input probabilities is negative splitmix-distributionsCategorical distributionPicks one index out of a discrete set with probability proportional to those supplied as input parameter vector splitmix-distributions!The Zipf-Mandelbrot distribution.Note that values of the parameter close to 1 are very computationally intensive.samples 10 1234 (zipf 1.1)[3170051793,2,668775891,146169301649651,23,36,5,6586194257347,21,37911]samples 10 1234 (zipf 1.5)[79,1,58,680,3,1,2,1,366,1] splitmix-distributionsDiscrete distributionPick one item with probability proportional to those supplied as input parameter vectorsplitmix-distributionsChinese restaurant processsample 1234 $ crp 1.02 50 [24,18,7,1]sample 1234 $ crp 2 50[17,8,13,3,3,3,2,1]sample 1234 $ crp 10 50)[5,7,1,6,1,3,5,1,1,3,1,1,1,4,3,1,3,1,1,1]splitmix-distributionsUniform between two valuessplitmix-distributionsStandard normal distributionsplitmix-distributionsUniform in [0, 1)splitmix-distributions4Beta distribution, from two standard uniform samplessplitmix-distributionsGamma distribution, using Ahrens-Dieter accept-reject (algorithm GD):Ahrens, J. H.; Dieter, U (January 1982). "Generating gamma variates by a modified rejection technique". Communications of the ACM. 25 (1): 47@54splitmix-distributionsPareto distributionsplitmix-distributionsThe Dirichlet distribution with the provided concentration parameters. The dimension of the distribution is determined by the number of concentration parameters supplied.$sample 1234 (dirichlet [0.1, 1, 10])[2.3781130220132788e-11,6.646079701567026e-2,0.9335392029605486]splitmix-distributionsNormal distributionsplitmix-distributionsExponential distributionsplitmix-distributionsLog-normal distribution with specified mean and standard deviation.splitmix-distributionsLaplace or double-exponential distribution with provided location and scale parameters.splitmix-distributions>Weibull distribution with provided shape and scale parameters.splitmix-distributionsWrap a splitmix PRNG functionsplitmix-distributions random seedsplitmix-distributionssize of samplesplitmix-distributions random seedsplitmix-distributions random seedsplitmix-distributions sample sizesplitmix-distributions random seedsplitmix-distributionsbias parameter  0 \lt p \lt 1 splitmix-distributionsnumber of Bernoulli trials  n \gt 0 splitmix-distributionsprobability vector  p_i \gt 0 , \forall i ! (does not need to be normalized) splitmix-distributionsprobability vector  p_i \gt 0 , \forall i ! (does not need to be normalized) splitmix-distributions \alpha \gt 1 splitmix-distributions(probability, item) vector  p_i \gt 0 , \forall i ! (does not need to be normalized)splitmix-distributionsconcentration parameter  \alpha \gt 1 splitmix-distributionsnumber of customers  n > 0 splitmix-distributionslowsplitmix-distributionshighsplitmix-distributionsshape parameter  \alpha \gt 0  splitmix-distributionsshape parameter  \beta \gt 0 splitmix-distributionsshape parameter  k \gt 0 splitmix-distributionsscale parameter  \theta \gt 0 splitmix-distributionsshape parameter  \alpha \gt 0 splitmix-distributionsscale parameter  x_{min} \gt 0 splitmix-distributionsconcentration parameters  \gamma_i \gt 0 , \forall i splitmix-distributionsmeansplitmix-distributionsstandard deviation  \sigma \gt 0 splitmix-distributionsrate parameter  \lambda > 0 splitmix-distributionsstandard deviation  \sigma \gt 0 splitmix-distributionslocation parametersplitmix-distributionsscale parameter  s \gt 0 splitmix-distributionsshape  a \gt 0 splitmix-distributionsscale  b \gt 0 splitmix-distributions!explicit generator passing (e.g. +)  ,      !"#$%&'()*+,-./0123splitmix-distributions-1.0.0-IAgpmITYnGbIUInYbnZjHY$System.Random.SplitMix.DistributionsGenGenTsampleTsampleIOsamplesT samplesIOsamplesamples bernoullifairCoin multinomial categoricalzipfdiscretecrpuniformR stdNormal stdUniformbetagammapareto dirichletnormal exponential logNormallaplaceweibullwithGen$fMonadStatesGenT $fEqCRPTables$fShowCRPTables$fFunctorCRPTables$fFoldableCRPTables$fSemigroupCRPTables$fMonoidCRPTables $fFunctorGenT$fApplicativeGenT $fMonadGenT$fMonadTransGenT $fMonadIOGenT$fMonadThrowGenT$fMonadReaderrGenTtransformers-0.5.6.2Control.Monad.Trans.State.LazyStateT'splitmix-0.1.0.4-729UVeZtvti6Bg7raBKOB5System.Random.SplitMix nextDouble