| Copyright | (c) Eitan Chatav 2017 |
|---|---|
| Maintainer | eitan@morphism.tech |
| Stability | experimental |
| Safe Haskell | None |
| Language | Haskell2010 |
Squeal.PostgreSQL
Description
Squeal is a deep embedding of PostgreSQL in Haskell. Let's see an example!
First, we need some language extensions because Squeal uses modern GHC features.
>>>:set -XDataKinds -XDeriveGeneric -XOverloadedLabels>>>:set -XOverloadedStrings -XTypeApplications -XTypeOperators
We'll need some imports.
>>>import Control.Monad (void)>>>import Control.Monad.Base (liftBase)>>>import Data.Int (Int32)>>>import Data.Text (Text)>>>import Squeal.PostgreSQL
We'll use generics to easily convert between Haskell and PostgreSQL values.
>>>import qualified Generics.SOP as SOP>>>import qualified GHC.Generics as GHC
The first step is to define the schema of our database. This is where
we use DataKinds and TypeOperators.
>>>:{type Schema = '[ "users" ::: '[ "pk_users" ::: 'PrimaryKey '["id"] ] :=> '[ "id" ::: 'Def :=> 'NotNull 'PGint4 , "name" ::: 'NoDef :=> 'NotNull 'PGtext ] , "emails" ::: '[ "pk_emails" ::: 'PrimaryKey '["id"] , "fk_user_id" ::: 'ForeignKey '["user_id"] "users" '["id"] ] :=> '[ "id" ::: 'Def :=> 'NotNull 'PGint4 , "user_id" ::: 'NoDef :=> 'NotNull 'PGint4 , "email" ::: 'NoDef :=> 'Null 'PGtext ] ] :}
Notice the use of type operators. ::: is used
to pair an alias Symbol with either a TableType or a ColumnType.
:=> is used to pair a TableConstraints with a ColumnsType,
yielding a TableType, or to pair a ColumnConstraint with a NullityType,
yielding a ColumnType.
Next, we'll write Definitions to set up and tear down the schema. In
Squeal, a Definition is a createTable, alterTable or dropTable
command and has two type parameters, corresponding to the schema
before being run and the schema after. We can compose definitions using
>>>. Here and in the rest of our commands we make use of overloaded
labels to refer to named tables and columns in our schema.
>>>:{let setup :: Definition '[] Schema setup = createTable #users ( serial `As` #id :* (text & notNull) `As` #name :* Nil ) ( primaryKey (Column #id :* Nil) `As` #pk_users :* Nil ) >>> createTable #emails ( serial `As` #id :* (int & notNull) `As` #user_id :* text `As` #email :* Nil ) ( primaryKey (Column #id :* Nil) `As` #pk_emails :* foreignKey (Column #user_id :* Nil) #users (Column #id :* Nil) OnDeleteCascade OnUpdateCascade `As` #fk_user_id :* Nil ) :}
We can easily see the generated SQL is unsuprising looking.
>>>renderDefinition setup"CREATE TABLE users (id serial, name text NOT NULL, CONSTRAINT pk_users PRIMARY KEY (id)); CREATE TABLE emails (id serial, user_id int NOT NULL, email text, CONSTRAINT pk_emails PRIMARY KEY (id), CONSTRAINT fk_user_id FOREIGN KEY (user_id) REFERENCES users (id) ON DELETE CASCADE ON UPDATE CASCADE);"
Notice that setup starts with an empty schema '[] and produces Schema.
In our createTable commands we included TableConstraints to define
primary and foreign keys, making them somewhat complex. Our tear down
Definition is simpler.
>>>:{let teardown :: Definition Schema '[] teardown = dropTable #emails >>> dropTable #users :}
>>>renderDefinition teardown"DROP TABLE emails; DROP TABLE users;"
Next, we'll write Manipulations to insert data into our two tables.
A Manipulation is an insertRow (or other inserts), update
or deleteFrom command and
has three type parameters, the schema it refers to, a list of parameters
it can take as input, and a list of columns it produces as output. When
we insert into the users table, we will need a parameter for the name
field but not for the id field. Since it's optional, we can use a default
value. However, since the emails table refers to the users table, we will
need to retrieve the user id that the insert generates and insert it into
the emails table. Take a careful look at the type and definition of both
of our inserts.
>>>:{let insertUser :: Manipulation Schema '[ 'NotNull 'PGtext ] '[ "fromOnly" ::: 'NotNull 'PGint4 ] insertUser = insertRow #users (Default `As` #id :* Set (param @1) `As` #name :* Nil) OnConflictDoNothing (Returning (#id `As` #fromOnly :* Nil)) :}
>>>:{let insertEmail :: Manipulation Schema '[ 'NotNull 'PGint4, 'Null 'PGtext] '[] insertEmail = insertRow #emails ( Default `As` #id :* Set (param @1) `As` #user_id :* Set (param @2) `As` #email :* Nil ) OnConflictDoNothing (Returning Nil) :}
>>>renderManipulation insertUser"INSERT INTO users (id, name) VALUES (DEFAULT, ($1 :: text)) ON CONFLICT DO NOTHING RETURNING id AS fromOnly;">>>renderManipulation insertEmail"INSERT INTO emails (id, user_id, email) VALUES (DEFAULT, ($1 :: int4), ($2 :: text)) ON CONFLICT DO NOTHING;"
Next we write a Query to retrieve users from the database. We're not
interested in the ids here, just the usernames and email addresses. We
need to use an inner join to get the right result. A Query is like a
Manipulation with the same kind of type parameters.
>>>:{let getUsers :: Query Schema '[] '[ "userName" ::: 'NotNull 'PGtext , "userEmail" ::: 'Null 'PGtext ] getUsers = select (#u ! #name `As` #userName :* #e ! #email `As` #userEmail :* Nil) ( from (table (#users `As` #u) & innerJoin (table (#emails `As` #e)) (#u ! #id .== #e ! #user_id)) ) :}
>>>renderQuery getUsers"SELECT u.name AS userName, e.email AS userEmail FROM users AS u INNER JOIN emails AS e ON (u.id = e.user_id)"
Now that we've defined the SQL side of things, we'll need a Haskell type
for users. We give the type Generic and
HasDatatypeInfo instances so that we can decode the rows
we receive when we run getUsers. Notice that the record fields of the
User type match the column names of getUsers.
>>>data User = User { userName :: Text, userEmail :: Maybe Text } deriving (Show, GHC.Generic)>>>instance SOP.Generic User>>>instance SOP.HasDatatypeInfo User
Let's also create some users to add to the database.
>>>:{let users :: [User] users = [ User "Alice" (Just "alice@gmail.com") , User "Bob" Nothing , User "Carole" (Just "carole@hotmail.com") ] :}
Now we can put together all the pieces into a program. The program
connects to the database, sets up the schema, inserts the user data
(using prepared statements as an optimization), queries the user
data and prints it out and finally closes the connection. We can thread
the changing schema information through by using the indexed PQ monad
transformer and when the schema doesn't change we can use Monad and
MonadPQ functionality.
>>>:{let session :: PQ Schema Schema IO () session = do idResults <- traversePrepared insertUser (Only . userName <$> users) ids <- traverse (fmap fromOnly . getRow 0) idResults traversePrepared_ insertEmail (zip (ids :: [Int32]) (userEmail <$> users)) usersResult <- runQuery getUsers usersRows <- getRows usersResult liftBase $ print (usersRows :: [User]) :}
>>>:{void . withConnection "host=localhost port=5432 dbname=exampledb" $ define setup & pqThen session & pqThen (define teardown) :} [User {userName = "Alice", userEmail = Just "alice@gmail.com"},User {userName = "Bob", userEmail = Nothing},User {userName = "Carole", userEmail = Just "carole@hotmail.com"}]
Documentation
module Squeal.PostgreSQL.Binary
module Squeal.PostgreSQL.Definition
module Squeal.PostgreSQL.Expression
module Squeal.PostgreSQL.PQ
module Squeal.PostgreSQL.Query
module Squeal.PostgreSQL.Schema