```{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
-- |
-- Module    : Statistics.Distribution.ChiSquared
-- Copyright : (c) 2010 Alexey Khudyakov
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- The chi-squared distribution. This is a continuous probability
-- distribution of sum of squares of k independent standard normal
-- distributions. It's commonly used in statistical tests
module Statistics.Distribution.ChiSquared (
ChiSquared
, chiSquaredNDF
-- * Constructors
, chiSquared
, chiSquaredE
) where

import Control.Applicative
import Data.Aeson            (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary           (Binary(..))
import Data.Data             (Data, Typeable)
import GHC.Generics          (Generic)
import Numeric.SpecFunctions ( incompleteGamma,invIncompleteGamma,logGamma,digamma)
import Numeric.MathFunctions.Constants (m_neg_inf)
import qualified System.Random.MWC.Distributions as MWC

import qualified Statistics.Distribution         as D
import Statistics.Internal

-- | Chi-squared distribution
newtype ChiSquared = ChiSquared
{ chiSquaredNDF :: Int
-- ^ Get number of degrees of freedom
}
deriving (Eq, Typeable, Data, Generic)

instance Show ChiSquared where
showsPrec i (ChiSquared n) = defaultShow1 "chiSquared" n i

instance ToJSON ChiSquared
instance FromJSON ChiSquared where
parseJSON (Object v) = do
n <- v .: "chiSquaredNDF"
maybe (fail \$ errMsg n) return \$ chiSquaredE n
parseJSON _ = empty

instance Binary ChiSquared where
put (ChiSquared x) = put x
get = do n <- get
maybe (fail \$ errMsg n) return \$ chiSquaredE n

-- | Construct chi-squared distribution. Number of degrees of freedom
--   must be positive.
chiSquared :: Int -> ChiSquared
chiSquared n = maybe (error \$ errMsg n) id \$ chiSquaredE n

-- | Construct chi-squared distribution. Number of degrees of freedom
--   must be positive.
chiSquaredE :: Int -> Maybe ChiSquared
chiSquaredE n
| n <= 0    = Nothing
| otherwise = Just (ChiSquared n)

errMsg :: Int -> String
errMsg n = "Statistics.Distribution.ChiSquared.chiSquared: N.D.F. must be positive. Got " ++ show n

instance D.Distribution ChiSquared where
cumulative = cumulative

instance D.ContDistr ChiSquared where
density chi x
| x <= 0    = 0
| otherwise = exp \$ log x * (ndf2 - 1) - x2 - logGamma ndf2 - log 2 * ndf2
where
ndf  = fromIntegral \$ chiSquaredNDF chi
ndf2 = ndf/2
x2   = x/2

logDensity chi x
| x <= 0    = m_neg_inf
| otherwise = log x * (ndf2 - 1) - x2 - logGamma ndf2 - log 2 * ndf2
where
ndf  = fromIntegral \$ chiSquaredNDF chi
ndf2 = ndf/2
x2   = x/2

quantile = quantile

instance D.Mean ChiSquared where
mean (ChiSquared ndf) = fromIntegral ndf

instance D.Variance ChiSquared where
variance (ChiSquared ndf) = fromIntegral (2*ndf)

instance D.MaybeMean ChiSquared where
maybeMean = Just . D.mean

instance D.MaybeVariance ChiSquared where
maybeStdDev   = Just . D.stdDev
maybeVariance = Just . D.variance

instance D.Entropy ChiSquared where
entropy (ChiSquared ndf) =
let kHalf = 0.5 * fromIntegral ndf in
kHalf
+ log 2
+ logGamma kHalf
+ (1-kHalf) * digamma kHalf

instance D.MaybeEntropy ChiSquared where
maybeEntropy = Just . D.entropy

instance D.ContGen ChiSquared where
genContVar (ChiSquared n) = MWC.chiSquare n

cumulative :: ChiSquared -> Double -> Double
cumulative chi x
| x <= 0    = 0
| otherwise = incompleteGamma (ndf/2) (x/2)
where
ndf = fromIntegral \$ chiSquaredNDF chi

quantile :: ChiSquared -> Double -> Double
quantile (ChiSquared ndf) p
| p == 0         = 0
| p == 1         = 1/0
| p > 0 && p < 1 = 2 * invIncompleteGamma (fromIntegral ndf / 2) p
| otherwise      =
error \$ "Statistics.Distribution.ChiSquared.quantile: p must be in [0,1] range. Got: "++show p
```