SubHask.Algebra
type family Logic a :: *
type ValidLogic a
type ClassicalLogic a
class Eq_ a
type Eq a
type ValidEq a
class POrd_ b
type POrd a
class Lattice_ b
type Lattice a
data POrdering
class MinBound_ b
type MinBound a
class Bounded b
class Complemented b
class Heyting b
class Boolean b
class Graded b
class Ord_ a
type Ord a
data Ordering
class Enum b
type family Elem s
type family SetElem s t
class Container s
class Constructible s
type Constructible0 x
class Foldable s
type family Index s
type family SetIndex s a
class IxContainer s
class Sliceable s
class IxConstructible s
class CanError a
data Maybe' a
data Labeled' x y
class Semigroup g
type family Actor s
class Action s
class Cancellative g
class Monoid g
class Abelian m
class Group g
class Rg r
class Rig r
type Rng r
class Ring r
class Integral a
class Field r
class OrdField r
class RationalField r
class BoundedField r
class ExpRing r
class ExpField r
class Real r
class QuotientField r s
class Normed g
class Metric v
type family Scalar m
type IsScalar r
type HasScalar a
type family a >< b :: *
class Cone m
class Module v
class FreeModule v
class FiniteModule v
class VectorSpace v
class Banach v
class Hilbert v
class TensorAlgebra v
data Any cxt x
type All cxt x