Copyright | (c) Jun Narumi 2018 |
---|---|
License | BSD-3 |
Maintainer | narumij@gmail.com |
Stability | experimental |
Portability | ? |
Safe Haskell | None |
Language | Haskell2010 |
Haskell Derivation of symbols and coordinate triplets Library
- References
- W. Fischer. and E. Koch. (2006), Derivation of symbols and coordinate triplets International Tables for Crystallography (2006). Vol. A, Chapter 11.2, pp. 812–816.
- Wondratschek, H. & Neubu ̈ser, J. (1967). Determination of the symmetry elements of a space group from the ‘general positions’ listed in International Tables for X-ray Crystallography, Vol. I. Acta Cryst. 23, 349–352.
Synopsis
- fromMatrix :: Integral a => Matrix (Ratio a) -> Either String String
- fromMatrix' :: (Monad m, MonadFail m, Integral a) => Matrix (Ratio a) -> m String
- toMatrix :: Integral a => String -> Either ParseError (Matrix (Ratio a))
- toMatrixHex :: Integral a => String -> Either ParseError (Matrix (Ratio a))
- notHexagonal :: Integral a => Parser (Matrix (Ratio a))
- hexagonal :: Integral a => Parser (Matrix (Ratio a))
Documentation
Derivation of geometric representation of symmetry operations from given matrix of symmetry operations
jpn) 与えられた対称操作の行列から、対称操作の幾何的表現を導出
>>>
fromMatrix . fromXYZ $ "x,y,z"
Right " 1 "
>>>
fromMatrix . fromXYZ $ "-y,x,-z"
Right "-4- 0,0,z; 0,0,0"
fromMatrix' :: (Monad m, MonadFail m, Integral a) => Matrix (Ratio a) -> m String Source #
Derivation of geometric representation of symmetry operations from given matrix of symmetry operations
jpn) 与えられた対称操作の行列から、対称操作の幾何的表現を導出
Derivation of matrix representation from a string of geometric representations of symmetric operations for hexagonal.
jpn) 対称操作の幾何的表現の文字列から行列表現の導出(六方晶用)
>>>
prettyXYZ <$> toMatrixHex "-3+ 0,0,z; 0,0,0"
Right "y,y-x,-z"
notHexagonal :: Integral a => Parser (Matrix (Ratio a)) Source #
referred to a cubic, tetragonal, orthorhombic, monoclinic, triclinic or rhombohedral