{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ExistentialQuantification #-} {- | Processes that use only the current and past data. Essentially this is a data type for the 'Synthesizer.State.Signal.crochetL' function. -} {- ToDo: Causal process usually depend on the sample rate, so we need a phantom type parameter of T for the rate. Include ST monad for mutable arrays, this can be useful for delay lines. On the other hand, couldn't we also use the StorableVector.Cursor data structure and avoid the ST monad here? -} module Synthesizer.Causal.Process ( T(Cons), fromStateMaybe, fromState, fromSimpleModifier, id, map, first, second, compose, split, fanout, loop, {- We don't re-export these identifiers because people could abuse them for other Arrows. (>>>), (***), (&&&), (Arrow.^<<), (Arrow.^>>), (Arrow.<<^), (Arrow.>>^), -} apply, applyFst, applySnd, applySameType, applyConst, apply2, apply3, applyStorableChunk, feed, feedFst, feedSnd, feedGenericFst, feedGenericSnd, feedConstFst, feedConstSnd, crochetL, scanL, scanL1, zipWith, consInit, chainControlled, replicateControlled, feedback, feedbackControlled, -- for testing applyFst', applySnd', ) where import qualified Synthesizer.State.Signal as Sig import qualified Synthesizer.Generic.Signal as SigG import qualified Synthesizer.Causal.Class as Class import qualified Synthesizer.Plain.Modifier as Modifier import qualified Data.StorableVector.Lazy as SVL import qualified Data.StorableVector as SV import Foreign.Storable (Storable, ) import qualified Control.Category as Cat import Control.Arrow (Arrow(..), returnA, (<<<), (>>>), (^>>), ArrowLoop(..), Kleisli(Kleisli), runKleisli, ) import Control.Monad.Trans.State (State, state, runState, StateT(StateT), runStateT, ) import Control.Monad (liftM, ) import Data.Tuple.HT (mapSnd, ) import Prelude hiding (id, map, zipWith, ) -- | Cf. StreamFusion 'Synthesizer.State.Signal.T' data T a b = forall s. -- Seq s => Cons !(a -> StateT s Maybe b) -- compute next value !s -- initial state {-# INLINE fromStateMaybe #-} fromStateMaybe :: (a -> StateT s Maybe b) -> s -> T a b fromStateMaybe = Cons {-# INLINE fromState #-} fromState :: (a -> State s b) -> s -> T a b fromState f = fromStateMaybe (\x -> StateT (Just . runState (f x))) {-# INLINE fromSimpleModifier #-} fromSimpleModifier :: Modifier.Simple s ctrl a b -> T (ctrl,a) b fromSimpleModifier (Modifier.Simple s f) = fromState (uncurry f) s {- It's almost a Kleisli Arrow, but the hidden type of the state disturbs. -} instance Cat.Category T where {-# INLINE id #-} {-# INLINE (.) #-} id = fromState return () (.) = flip compose instance Arrow T where {-# INLINE arr #-} {-# INLINE first #-} {-# INLINE second #-} {-# INLINE (***) #-} {-# INLINE (&&&) #-} arr = map first = liftKleisli first second = liftKleisli second (***) = split (&&&) = fanout {- I think we cannot define an ArrowApply instance, because we must extract the initial state somehow from the inner (T a b) which is not possible. instance ArrowApply T where -- app = Cons (runKleisli undefined) () app = first (arr (flip Cons () . runKleisli)) >>> app -} instance ArrowLoop T where {-# INLINE loop #-} loop = liftKleisli loop instance Class.C T where type SignalOf T = Sig.T type ProcessOf Sig.T = T toSignal = flip applyConst () fromSignal sig = const () ^>> feed sig {-# INLINE extendStateFstT #-} extendStateFstT :: Monad m => StateT s m a -> StateT (t,s) m a extendStateFstT st = StateT (\(t0,s0) -> liftM (mapSnd (\s1 -> (t0,s1))) (runStateT st s0)) {-# INLINE extendStateSndT #-} extendStateSndT :: Monad m => StateT s m a -> StateT (s,t) m a extendStateSndT st = StateT (\(s0,t0) -> liftM (mapSnd (\s1 -> (s1,t0))) (runStateT st s0)) {-# INLINE liftKleisli #-} liftKleisli :: (forall s. Kleisli (StateT s Maybe) a0 a1 -> Kleisli (StateT s Maybe) b0 b1) -> T a0 a1 -> T b0 b1 liftKleisli op (Cons f s) = Cons (runKleisli $ op $ Kleisli f) s {-# INLINE liftKleisli2 #-} liftKleisli2 :: (forall s. Kleisli (StateT s Maybe) a0 a1 -> Kleisli (StateT s Maybe) b0 b1 -> Kleisli (StateT s Maybe) c0 c1) -> T a0 a1 -> T b0 b1 -> T c0 c1 liftKleisli2 op (Cons f s) (Cons g t) = Cons (runKleisli (Kleisli (extendStateSndT . f) `op` Kleisli (extendStateFstT . g))) (s,t) {-# INLINE id #-} id :: T a a id = returnA {-# INLINE map #-} map :: (a -> b) -> T a b map f = fromState (return . f) () {-# INLINE compose #-} compose :: T a b -> T b c -> T a c compose = liftKleisli2 (>>>) {-# INLINE split #-} split :: T a b -> T c d -> T (a,c) (b,d) split = liftKleisli2 (***) {-# INLINE fanout #-} fanout :: T a b -> T a c -> T a (b,c) fanout = liftKleisli2 (&&&) {-# INLINE runViewL #-} runViewL :: (SigG.Read sig a) => sig a -> (forall s. StateT s Maybe a -> s -> x) -> x runViewL sig cont = SigG.runViewL sig (\f s -> cont (StateT f) s) {-# INLINE apply #-} apply :: (SigG.Transform sig a, SigG.Transform sig b) => T a b -> sig a -> sig b apply (Cons f s) = SigG.crochetL (runStateT . f) s {-# INLINE applySameType #-} applySameType :: (SigG.Transform sig a) => T a a -> sig a -> sig a applySameType (Cons f s) = SigG.crochetL (runStateT . f) s {- | I think this function does too much. Better use 'feedFst' and (>>>). -} {-# INLINE applyFst #-} applyFst, applyFst' :: (SigG.Read sig a) => T (a,b) c -> sig a -> T b c applyFst c as = c <<< feedFst as applyFst' (Cons f s) as = runViewL as (\getNext r -> Cons (\b -> do a <- extendStateFstT getNext extendStateSndT (f (a,b))) (s,r)) {- | I think this function does too much. Better use 'feedSnd' and (>>>). -} {-# INLINE applySnd #-} applySnd, applySnd' :: (SigG.Read sig b) => T (a,b) c -> sig b -> T a c applySnd c as = c <<< feedSnd as applySnd' (Cons f s) bs = runViewL bs (\getNext r -> Cons (\a -> do b <- extendStateFstT getNext extendStateSndT (f (a,b))) (s,r)) {- | applyConst c x == apply c (repeat x) -} {-# INLINE applyConst #-} applyConst :: T a b -> a -> Sig.T b applyConst (Cons f s) a = Sig.unfoldR (runStateT (f a)) s {- Can be easily done by converting the result of applyConst to generic signal {-# INLINE applyConstGeneric #-} applyConstGeneric :: SigG.LazySize -> T a b -> a -> sig b applyConstGeneric size (Cons f s) a = SigG.unfoldR size (runStateT (f a)) s -} {-# INLINE apply2 #-} apply2 :: (SigG.Read sig a, SigG.Transform sig b, SigG.Transform sig c) => T (a,b) c -> sig a -> sig b -> sig c apply2 f x y = apply (applyFst f x) y {-# INLINE apply3 #-} apply3 :: (SigG.Read sig a, SigG.Read sig b, SigG.Transform sig c, SigG.Transform sig d) => T (a,b,c) d -> sig a -> sig b -> sig c -> sig d apply3 f x y z = apply2 (applyFst ((\(a,(b,c)) -> (a,b,c)) ^>> f) x) y z {- A generalized version could be of type Transform sig a b => Causal.T a b -> Causal.T (sig a) (sig b) but we cannot implement that, since crochetL does not return the final state. -} applyStorableChunk :: (Storable a, Storable b) => T a b -> T (SV.Vector a) (SV.Vector b) applyStorableChunk (Cons next start) = Cons (\a -> StateT $ \ms -> flip fmap ms $ \s -> SVL.crochetLChunk (runStateT . next) s a) (Just start) {-# INLINE feed #-} feed :: (SigG.Read sig a) => sig a -> T () a feed proc = runViewL proc (\getNext -> fromStateMaybe (const getNext)) {-# INLINE feedFst #-} feedFst :: (SigG.Read sig a) => sig a -> T b (a,b) feedFst proc = runViewL proc (\getNext -> fromStateMaybe (\b -> fmap (flip (,) b) getNext)) {-# INLINE feedSnd #-} feedSnd :: (SigG.Read sig a) => sig a -> T b (b,a) feedSnd proc = runViewL proc (\getNext -> fromStateMaybe (\b -> fmap ((,) b) getNext)) {-# INLINE feedConstFst #-} feedConstFst :: a -> T b (a,b) feedConstFst a = map (\b -> (a,b)) {-# INLINE feedConstSnd #-} feedConstSnd :: a -> T b (b,a) feedConstSnd a = map (\b -> (b,a)) {-# INLINE feedGenericFst #-} feedGenericFst :: (SigG.Read sig a) => sig a -> T b (a,b) feedGenericFst = feedFst . SigG.toState {-# INLINE feedGenericSnd #-} feedGenericSnd :: (SigG.Read sig a) => sig a -> T b (b,a) feedGenericSnd = feedSnd . SigG.toState -- * list like functions {-# INLINE crochetL #-} crochetL :: (x -> acc -> Maybe (y, acc)) -> acc -> T x y crochetL f s = fromStateMaybe (StateT . f) s {-# INLINE scanL #-} scanL :: (acc -> x -> acc) -> acc -> T x acc scanL f start = fromState (\x -> state $ \acc -> (acc, f acc x)) start {-# INLINE scanL1 #-} scanL1 :: (x -> x -> x) -> T x x scanL1 f = crochetL (\x acc -> Just (x, Just $ maybe x (flip f x) acc)) Nothing {-# INLINE zipWith #-} zipWith :: (SigG.Read sig a) => (a -> b -> c) -> sig a -> T b c zipWith f = applyFst (map (uncurry f)) {- | Prepend an element to a signal, but keep the signal length, i.e. drop the last element. -} {-# INLINE consInit #-} consInit :: x -> T x x consInit = crochetL (\x acc -> Just (acc, x)) {-# INLINE chainControlled #-} chainControlled :: [T (c,x) x] -> T (c,x) x chainControlled = Class.chainControlled {- | If @T@ would be the function type @->@ then @replicateControlled 3 f@ computes @\(c,x) -> f(c, f(c, f(c, x)))@. -} {-# INLINE replicateControlled #-} replicateControlled :: Int -> T (c,x) x -> T (c,x) x replicateControlled = Class.replicateControlled {-# INLINE feedback #-} feedback :: T (a,c) b -> T b c -> T a b feedback forth back = loop (forth >>> id &&& back) {-# INLINE feedbackControlled #-} feedbackControlled :: T ((ctrl,a),c) b -> T (ctrl,b) c -> T (ctrl,a) b feedbackControlled forth back = loop (map (fst.fst) &&& forth >>> map snd &&& back) {- {-# INLINE feedbackControlled #-} feedbackControlled :: T (ctrl, (a,c)) b -> T (ctrl,b) c -> T (ctrl,a) b feedbackControlled forth back = loop ((\((ctrl,a),c) -> (ctrl, (a,c))) ^>> map fst &&& forth >>> map snd &&& back) -}