{-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Synthesizer.Dimensional.Causal.Process ( module Synthesizer.Dimensional.Causal.Process, -- * re-export Arrow, it would be better to restrict that to Causal processes (Arrow.***), (Arrow.&&&), (Arrow.>>>), (Arrow.<<<), ArrowD.compose, ArrowD.first, ArrowD.second, ArrowD.split, ArrowD.fanout, ArrowD.loop, ArrowD.loopVolume, ) where import qualified Synthesizer.Dimensional.Arrow as ArrowD import qualified Synthesizer.Dimensional.Map as Map import qualified Synthesizer.Dimensional.Signal.Private as SigA import qualified Synthesizer.Dimensional.Sample as Sample import qualified Synthesizer.Dimensional.Amplitude.Flat as Flat import qualified Synthesizer.Dimensional.Amplitude as Amp import qualified Synthesizer.Dimensional.Rate as Rate import qualified Synthesizer.Causal.Arrow as CausalArrow import qualified Synthesizer.Causal.Process as Causal import qualified Control.Arrow as Arrow import Control.Arrow (Arrow, ArrowLoop, first, (>>>), (<<<), ) import Control.Category (Category, ) import Control.Applicative (Applicative, ) import qualified Synthesizer.State.Signal as Sig import qualified Synthesizer.Generic.Signal2 as SigG2 import qualified Synthesizer.Generic.Signal as SigG import qualified Algebra.Module as Module import qualified Algebra.Field as Field import qualified Algebra.Ring as Ring import qualified Number.DimensionTerm as DN import qualified Algebra.DimensionTerm as Dim import Data.Tuple.HT as TupleHT (mapFst, ) -- import NumericPrelude.Numeric (one) import Prelude hiding (map, id, fst, snd, ) {- | Note that @amp@ can also be a pair of amplitudes or a more complicated ensemble of amplitudes. -} type T s sample0 sample1 = ArrowD.T (Core s) sample0 sample1 type Single s amp0 amp1 yv0 yv1 = ArrowD.Single (Core s) amp0 amp1 yv0 yv1 newtype Core s yv0 yv1 = Core (Causal.T yv0 yv1) deriving (Category, Arrow, ArrowLoop, CausalArrow.C) instance ArrowD.Applicable (Core s) (Rate.Phantom s) consFlip :: (Sample.Amplitude sample0 -> (Sample.Amplitude sample1, Causal.T (Sample.Displacement sample0) (Sample.Displacement sample1))) -> T s sample0 sample1 consFlip f = ArrowD.Cons $ \ampIn -> let (ampOut, causal) = f ampIn in (Core causal, ampOut) infixl 9 `apply` {-# INLINE apply #-} apply :: (SigG2.Transform sig yv0 yv1) => Single s amp0 amp1 yv0 yv1 -> SigA.T (Rate.Phantom s) amp0 (sig yv0) -> SigA.T (Rate.Phantom s) amp1 (sig yv1) apply = ArrowD.apply {-# INLINE applyFlat #-} applyFlat :: (Flat.C yv0 amp0, SigG2.Transform sig yv0 yv1) => Single s (Amp.Flat yv0) amp1 yv0 yv1 -> SigA.T (Rate.Phantom s) amp0 (sig yv0) -> SigA.T (Rate.Phantom s) amp1 (sig yv1) applyFlat = ArrowD.applyFlat {-# INLINE canonicalizeFlat #-} canonicalizeFlat :: (Flat.C y flat) => Single s flat (Amp.Flat y) y y canonicalizeFlat = ArrowD.canonicalizeFlat {-# INLINE applyConst #-} applyConst :: (Amp.C amp1, Ring.C y0) => Single s (Amp.Numeric amp0) amp1 y0 yv1 -> amp0 -> SigA.T (Rate.Phantom s) amp1 (Sig.T yv1) applyConst = ArrowD.applyConst infixl 0 $/:, $/- {-# INLINE ($/:) #-} ($/:) :: (Applicative f, SigG2.Transform sig yv0 yv1) => f (Single s amp0 amp1 yv0 yv1) -> f (SigA.T (Rate.Phantom s) amp0 (sig yv0)) -> f (SigA.T (Rate.Phantom s) amp1 (sig yv1)) ($/:) = (ArrowD.$/:) {-# INLINE ($/-) #-} ($/-) :: (Amp.C amp1, Functor f, Ring.C y0) => f (Single s (Amp.Numeric amp0) amp1 y0 yv1) -> amp0 -> f (SigA.T (Rate.Phantom s) amp1 (Sig.T yv1)) ($/-) = (ArrowD.$/-) infixl 9 `applyFst` {-# INLINE applyFst #-} applyFst :: (SigG.Read sig yv) => T s (Sample.T amp yv, restSampleIn) restSampleOut -> SigA.T (Rate.Phantom s) amp (sig yv) -> T s restSampleIn restSampleOut applyFst c x = c <<< feedFst x {-# INLINE applyFlatFst #-} applyFlatFst :: (Flat.C yv amp, SigG.Read sig yv) => T s (Sample.T (Amp.Flat yv) yv, restSampleIn) restSampleOut -> SigA.T (Rate.Phantom s) amp (sig yv) -> T s restSampleIn restSampleOut applyFlatFst c = applyFst (c <<< first canonicalizeFlat) {-# INLINE feedFst #-} feedFst :: (SigG.Read sig yv) => SigA.T (Rate.Phantom s) amp (sig yv) -> T s restSample (Sample.T amp yv, restSample) feedFst x = ArrowD.Cons $ \yAmp -> (Core $ Causal.feedFst (SigA.body x), (SigA.amplitude x, yAmp)) {-# INLINE applySnd #-} applySnd :: (SigG.Read sig yv) => T s (restSampleIn, Sample.T amp yv) restSampleOut -> SigA.T (Rate.Phantom s) amp (sig yv) -> T s restSampleIn restSampleOut applySnd c x = c <<< feedSnd x {-# INLINE feedSnd #-} feedSnd :: (SigG.Read sig yv) => SigA.T (Rate.Phantom s) amp (sig yv) -> T s restSample (restSample, Sample.T amp yv) feedSnd x = ArrowD.Cons $ \yAmp -> (Core $ Causal.feedSnd (SigA.body x), (yAmp, SigA.amplitude x)) {-# INLINE map #-} map :: Map.T sample0 sample1 -> T s sample0 sample1 map (ArrowD.Cons f) = ArrowD.Cons $ mapFst Arrow.arr . f infixr 1 ^>>, >>^ infixr 1 ^<<, <<^ {-# INLINE (^>>) #-} -- | Precomposition with a pure function. (^>>) :: Map.T sample0 sample1 -> T s sample1 sample2 -> T s sample0 sample2 f ^>> a = map f >>> a {-# INLINE (>>^) #-} -- | Postcomposition with a pure function. (>>^) :: T s sample0 sample1 -> Map.T sample1 sample2 -> T s sample0 sample2 a >>^ f = a >>> map f {-# INLINE (<<^) #-} -- | Precomposition with a pure function (right-to-left variant). (<<^) :: T s sample1 sample2 -> Map.T sample0 sample1 -> T s sample0 sample2 a <<^ f = a <<< map f {-# INLINE (^<<) #-} -- | Postcomposition with a pure function (right-to-left variant). (^<<) :: Map.T sample1 sample2 -> T s sample0 sample1 -> T s sample0 sample2 f ^<< a = map f <<< a {- | Lift a low-level homogeneous process to a dimensional one. Note that the @amp@ type variable is unrestricted. This way we show, that the amplitude is not touched, which also means that the underlying low-level process must be homogeneous. -} {-# INLINE homogeneous #-} homogeneous :: Causal.T yv0 yv1 -> Single s amp amp yv0 yv1 homogeneous c = ArrowD.Cons $ \ xAmp -> (Core c, xAmp) {-# INLINE id #-} id :: T s sample sample id = ArrowD.id {-# INLINE loop2Volume #-} loop2Volume :: (Field.C y0, Module.C y0 yv0, Dim.C v0, Field.C y1, Module.C y1 yv1, Dim.C v1) => (DN.T v0 y0, DN.T v1 y1) -> T s (restSampleIn, (Sample.T (Amp.Dimensional v0 y0) yv0, Sample.T (Amp.Dimensional v1 y1) yv1)) (restSampleOut, (Sample.T (Amp.Dimensional v0 y0) yv0, Sample.T (Amp.Dimensional v1 y1) yv1)) -> T s restSampleIn restSampleOut loop2Volume (amp0,amp1) p = ArrowD.loopVolume amp0 $ ArrowD.loopVolume amp1 $ (Map.balanceRight >>> p >>> Map.balanceLeft) -- alternative implementation to ArrowD.loop2Volume