{-# LANGUAGE CPP #-} #ifdef LANGUAGE_DeriveDataTypeable {-# LANGUAGE DeriveDataTypeable #-} #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ---------------------------------------------------------------------------- -- | -- Module : Data.Tagged -- Copyright : 2009-2013 Edward Kmett -- License : BSD3 -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : portable -- ------------------------------------------------------------------------------- module Data.Tagged ( -- * Tagged values Tagged(..) , retag , untag , tagSelf , untagSelf , asTaggedTypeOf , witness -- * Conversion , proxy , unproxy , tagWith ) where import Control.Applicative ((<$>), liftA2, Applicative(..)) import Control.Monad (liftM) import Data.Traversable (Traversable(..)) import Data.Foldable (Foldable(..)) #ifdef __GLASGOW_HASKELL__ import Data.Data #endif import Data.Ix (Ix(..)) import Data.Monoid #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 707 import Data.Proxy #endif -- | A @'Tagged' s b@ value is a value @b@ with an attached phantom type @s@. -- This can be used in place of the more traditional but less safe idiom of -- passing in an undefined value with the type, because unlike an @(s -> b)@, -- a @'Tagged' s b@ can't try to use the argument @s@ as a real value. -- -- Moreover, you don't have to rely on the compiler to inline away the extra -- argument, because the newtype is \"free\" newtype Tagged s b = Tagged { unTagged :: b } deriving ( Eq, Ord, Ix, Bounded #if __GLASGOW_HASKELL__ >= 707 , Typeable #endif ) #ifdef __GLASGOW_HASKELL__ #if __GLASGOW_HASKELL__ < 707 instance Typeable2 Tagged where typeOf2 _ = mkTyConApp taggedTyCon [] taggedTyCon :: TyCon #if __GLASGOW_HASKELL__ < 704 taggedTyCon = mkTyCon "Data.Tagged.Tagged" #else taggedTyCon = mkTyCon3 "tagged" "Data.Tagged" "Tagged" #endif #endif instance (Data s, Data b) => Data (Tagged s b) where gfoldl f z (Tagged b) = z Tagged `f` b toConstr _ = taggedConstr gunfold k z c = case constrIndex c of 1 -> k (z Tagged) _ -> error "gunfold" dataTypeOf _ = taggedDataType dataCast1 f = gcast1 f dataCast2 f = gcast2 f taggedConstr :: Constr taggedConstr = mkConstr taggedDataType "Tagged" [] Prefix {-# INLINE taggedConstr #-} taggedDataType :: DataType taggedDataType = mkDataType "Data.Tagged.Tagged" [taggedConstr] {-# INLINE taggedDataType #-} #endif instance Show b => Show (Tagged s b) where showsPrec n (Tagged b) = showParen (n > 10) $ showString "Tagged " . showsPrec 11 b instance Read b => Read (Tagged s b) where readsPrec d = readParen (d > 10) $ \r -> [(Tagged a, t) | ("Tagged", s) <- lex r, (a, t) <- readsPrec 11 s] instance Monoid a => Monoid (Tagged s a) where mempty = Tagged mempty mappend (Tagged a) (Tagged b) = Tagged (mappend a b) instance Functor (Tagged s) where fmap f (Tagged x) = Tagged (f x) {-# INLINE fmap #-} instance Applicative (Tagged s) where pure = Tagged {-# INLINE pure #-} Tagged f <*> Tagged x = Tagged (f x) {-# INLINE (<*>) #-} instance Monad (Tagged s) where return = Tagged {-# INLINE return #-} Tagged m >>= k = k m {-# INLINE (>>=) #-} _ >> n = n {-# INLINE (>>) #-} instance Foldable (Tagged s) where foldMap f (Tagged x) = f x {-# INLINE foldMap #-} fold (Tagged x) = x {-# INLINE fold #-} foldr f z (Tagged x) = f x z {-# INLINE foldr #-} foldl f z (Tagged x) = f z x {-# INLINE foldl #-} foldl1 _ (Tagged x) = x {-# INLINE foldl1 #-} foldr1 _ (Tagged x) = x {-# INLINE foldr1 #-} instance Traversable (Tagged s) where traverse f (Tagged x) = Tagged <$> f x {-# INLINE traverse #-} sequenceA (Tagged x) = Tagged <$> x {-# INLINE sequenceA #-} mapM f (Tagged x) = liftM Tagged (f x) {-# INLINE mapM #-} sequence (Tagged x) = liftM Tagged x {-# INLINE sequence #-} instance Enum a => Enum (Tagged s a) where succ = fmap succ pred = fmap pred toEnum = Tagged . toEnum fromEnum (Tagged x) = fromEnum x enumFrom (Tagged x) = map Tagged (enumFrom x) enumFromThen (Tagged x) (Tagged y) = map Tagged (enumFromThen x y) enumFromTo (Tagged x) (Tagged y) = map Tagged (enumFromTo x y) enumFromThenTo (Tagged x) (Tagged y) (Tagged z) = map Tagged (enumFromThenTo x y z) instance Num a => Num (Tagged s a) where (+) = liftA2 (+) (-) = liftA2 (-) (*) = liftA2 (*) negate = fmap negate abs = fmap abs signum = fmap signum fromInteger = Tagged . fromInteger instance Real a => Real (Tagged s a) where toRational (Tagged x) = toRational x instance Integral a => Integral (Tagged s a) where quot = liftA2 quot rem = liftA2 rem div = liftA2 div mod = liftA2 mod quotRem (Tagged x) (Tagged y) = (Tagged a, Tagged b) where (a, b) = quotRem x y divMod (Tagged x) (Tagged y) = (Tagged a, Tagged b) where (a, b) = divMod x y toInteger (Tagged x) = toInteger x instance Fractional a => Fractional (Tagged s a) where (/) = liftA2 (/) recip = fmap recip fromRational = Tagged . fromRational instance Floating a => Floating (Tagged s a) where pi = Tagged pi exp = fmap exp log = fmap log sqrt = fmap sqrt sin = fmap sin cos = fmap cos tan = fmap tan asin = fmap asin acos = fmap acos atan = fmap atan sinh = fmap sinh cosh = fmap cosh tanh = fmap tanh asinh = fmap asinh acosh = fmap acosh atanh = fmap atanh (**) = liftA2 (**) logBase = liftA2 (**) instance RealFrac a => RealFrac (Tagged s a) where properFraction (Tagged x) = (a, Tagged b) where (a, b) = properFraction x truncate (Tagged x) = truncate x round (Tagged x) = round x ceiling (Tagged x) = ceiling x floor (Tagged x) = floor x instance RealFloat a => RealFloat (Tagged s a) where floatRadix (Tagged x) = floatRadix x floatDigits (Tagged x) = floatDigits x floatRange (Tagged x) = floatRange x decodeFloat (Tagged x) = decodeFloat x encodeFloat m n = Tagged (encodeFloat m n) exponent (Tagged x) = exponent x significand = fmap significand scaleFloat n = fmap (scaleFloat n) isNaN (Tagged x) = isNaN x isInfinite (Tagged x) = isInfinite x isDenormalized (Tagged x) = isDenormalized x isNegativeZero (Tagged x) = isNegativeZero x isIEEE (Tagged x) = isIEEE x atan2 = liftA2 atan2 -- | Some times you need to change the tag you have lying around. -- Idiomatic usage is to make a new combinator for the relationship between the -- tags that you want to enforce, and define that combinator using 'retag'. -- -- @ -- data Succ n -- retagSucc :: 'Tagged' n a -> 'Tagged' (Succ n) a -- retagSucc = 'retag' -- @ retag :: Tagged s b -> Tagged t b retag = Tagged . unTagged {-# INLINE retag #-} -- | Alias for 'unTagged' untag :: Tagged s b -> b untag = unTagged -- | Tag a value with its own type. tagSelf :: a -> Tagged a a tagSelf = Tagged {-# INLINE tagSelf #-} -- | 'asTaggedTypeOf' is a type-restricted version of 'const'. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the tag of the second. asTaggedTypeOf :: s -> tagged s b -> s asTaggedTypeOf = const {-# INLINE asTaggedTypeOf #-} witness :: Tagged a b -> a -> b witness (Tagged b) _ = b {-# INLINE witness #-} -- | 'untagSelf' is a type-restricted version of 'untag'. untagSelf :: Tagged a a -> a untagSelf (Tagged x) = x {-# INLINE untagSelf #-} -- | Convert from a 'Tagged' representation to a representation -- based on a 'Proxy'. proxy :: Tagged s a -> proxy s -> a proxy (Tagged x) _ = x {-# INLINE proxy #-} -- | Convert from a representation based on a 'Proxy' to a 'Tagged' -- representation. unproxy :: (Proxy s -> a) -> Tagged s a unproxy f = Tagged (f Proxy) {-# INLINE unproxy #-} -- | Another way to convert a proxy to a tag. tagWith :: proxy s -> a -> Tagged s a tagWith _ = Tagged {-# INLINE tagWith #-}