X      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~"(c) The University of Glasgow 2015/BSD-style (see the file libraries/base/LICENSE)libraries@haskell.org experimentalportableSafe?Jma`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"!      ma`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"!      SafeB"(c) The University of Glasgow 2003/BSD-style (see the file libraries/base/LICENSE)libraries@haskell.org experimentalportable Trustworthy 167;=GQV~OTurn a value into a Template Haskell expression, suitable for use in a splice.0Generate a fresh name, which cannot be captured.For example, this: *f = $(do nm1 <- newName "x" let nm2 =  "x" return (  [ nm1] (LamE [VarP nm2] ( nm1))) )will produce the splice f = \x0 -> \x -> x0In particular, the occurrence VarE nm1 refers to the binding VarP nm1%, and is not captured by the binding VarP nm2.Although names generated by newName cannot  be captured , they can capture other names. For example, this: og = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2))) )will produce the splice g = \x -> \x0 -> x0since the occurrence VarE nm2) is captured by the innermost binding of x , namely VarP nm1.Generate a capturable name. Occurrences of such names will be resolved according to the Haskell scoping rules at the occurrence site. For example: =f = [| pi + $(varE (mkName "pi")) |] ... g = let pi = 3 in $fIn this case, g is desugared to g = Prelude.pi + 3 Note that mkName" may be used with qualified names: mkName "Prelude.pi" See also E for a useful combinator. The above example could be rewritten using dyn as f = [| pi + $(dyn "pi") |] Only used internallyA  instance can have any of its values turned into a Template Haskell expression. This is needed when a value used within a Template Haskell quotation is bound outside the Oxford brackets ( [| ... |]+) but not at the top level. As an example: )add1 :: Int -> Q Exp add1 x = [| x + 1 |]2Template Haskell has no way of knowing what value x: will take on at splice-time, so it requires the type of x to be an instance of .6 instances can be derived automatically by use of the  -XDeriveLift GHC language extension: {-# LANGUAGE DeriveLift #-} module Foo where import Language.Haskell.TH.Syntax data Bar a = Bar1 a (Bar a) | Bar2 String deriving LiftPattern in Haskell given in {}7An abstract type representing names in the syntax tree.]s can be constructed in several ways, which come with different name-capture guarantees (see &Language.Haskell.TH.Syntax#namecapture% for an explanation of name capture):the built-in syntax 'f and ''T4 can be used to construct names, The expression 'f gives a Name which refers to the value f currently in scope, and ''T gives a Name which refers to the type T7 currently in scope. These names can never be captured. and  are similar to 'f and ''T respectively, but the Nameps are looked up at the point where the current splice is being run. These names can never be captured.D monadically generates a new name, which can never be captured. generates a capturable name.Names constructed using newName and mkName" may be used in bindings (such as  let x = ... or x -> ...), but names constructed using lookupValueName, lookupTypeName, 'f, ''T may not.Since the advent of ConstraintKindsC, constraints are really just types. Equality constraints use the C constructor. Constraints may also be tuples of other constraints.Injectivity annotation{To avoid duplication between kinds and types, they are defined to be the same. Naturally, you would never have a type be % and you would never have a kind be {E, but many of the other constructors are shared. Note that the kind Bool is denoted with }, not ~'. Similarly, tuple kinds are made with , not .&Varieties of allowed instance overlap.<What the user explicitly requests when deriving an instance.,May be overlapped by more specific instances#May overlap a more general instanceBoth  and Both  and @, and pick an arbitrary one if multiple choices are available.A "standard" derived instance -XDeriveAnyClass -XGeneralizedNewtypeDerivingg&Annotation target for reifyAnnotationsjRole annotationsk nominall representationalm phantomn _p 2q HellosType family result signaturet no signatureu kv = r, = (r :: k)w ax (a :: k)y forall <vars>. <ctxt> -> <type>z T a b{ t :: k| a} T~ 'T T + T T + TSee  Language.Haskell.TH.Syntax#infix (T) (,), (,,), etc. (#,#), (#,,#), etc. (#|#), (#||#), etc. -> ~ [] '(), '(,), '(,,), etc. '[] (':) *  Constraint  0,1,2, etc.@_,"A pattern synonym's argument type. pattern P {x y z} = p pattern {x P y} = p pattern P { {x,y,z} } = p#A pattern synonym's directionality. pattern P x {<-} p pattern P x {=} p  pattern P x {<-} p where P x = eAs of template-haskell-2.11.0.0,  has been replaced by .As of template-haskell-2.11.0.0,  has been replaced by .As of template-haskell-2.11.0.0,  has been replaced by . C { {-# UNPACK #-} !}a C Int a C { v :: Int, w :: a } Int :+ a forall a. Eq a => C [a] C :: a -> b -> T b Int C :: { v :: Int } -> T b IntUnlike  and ,  refers to the strictness that the compiler chooses for a data constructor field, which may be different from what is written in source code. See  for more information. C a C {~}a C {!}a C a C { {-# NOUNPACK #-} } a C { {-# UNPACK #-} } a +{ {-# COMPLETE C_1, ..., C_i [ :: T ] #-} }One equation of a type family instance or closed type family. The arguments are the left-hand-side type patterns and the right-hand-side result.Common elements of  and S. By analogy with "head" for type classes and type class instances as defined in 0Type classes: an exploration of the design space, the TypeFamilyHead; is defined to be the elements of the declaration between  type family and where.A Pattern synonym's type. Note that a pattern synonym's *fully* specified type has a peculiar shape coming with two forall quantifiers and two constraint contexts. For example, consider the pattern synonympattern P x1 x2 ... xn = some-pattern*P's complete type is of the following form|forall universals. required constraints => forall existentials. provided constraints => t1 -> t2 -> ... -> tn -> tconsisting of four parts::1) the (possibly empty lists of) universally quantified type variables and required constraints on them. 2) the (possibly empty lists of) existentially quantified type variables and the provided constraints on them. 3) the types t1, t2, .., tn of x1, x2, .., xn, respectively 4) the type t of  some-pattern, mentioning only universals.Pattern synonym types interact with TH when (a) reifying a pattern synonym, (b) pretty printing, or (c) specifying a pattern synonym's type signature explicitly:b(a) Reification always returns a pattern synonym's *fully* specified type in abstract syntax.(b) Pretty printing via  pprPatSynType abbreviates a pattern synonym's type unambiguously in concrete syntax: The rule of thumb is to print initial empty universals and the required context as `() =>`, if existentials and a provided context follow. If only universals and their required context, but no existentials are specified, only the universals and their required context are printed. If both or none are specified, so both (or none) are printed.B(c) When specifying a pattern synonym's type explicitly with Z either one of the universals, the existentials, or their contexts may be left empty.TSee the GHC user's guide for more information on pattern synonyms and their types:  4https://downloads.haskell.org/~ghc/latest/docs/html/1 users_guide/syntax-extns.html#pattern-synonyms. A single deriving! clause at the end of a datatype. { deriving stock (Eq, Ord) } { f p1 p2 = b where decs } { p = b where decs } T{ data Cxt x => T x = A x | B (T x) deriving (Z,W) deriving stock Eq } S{ newtype Cxt x => T x = A (B x) deriving (Z,W Q) deriving stock Eq } { type T x = (x,x) }  { class Eq a => Ord a where ds } A{ instance {-# OVERLAPS #-} Show w => Show [w] where ds } { length :: [a] -> Int } -{ foreign import ... } { foreign export ... } { infix 3 foo } { {-# INLINE [1] foo #-} } { data family T a b c :: * } f{ data instance Cxt x => T [x] = A x | B (T x) deriving (Z,W) deriving stock Eq } f{ newtype instance Cxt x => T [x] = A (B x) deriving (Z,W) deriving stock Eq } { type instance ... } -{ type family T a b c = (r :: *) | r -> a b } 3{ type family F a b = (r :: *) | r -> a where ... } ({ type role T nominal representational } 0{ deriving stock instance Ord a => Ord (Foo a) } &{ default size :: Data a => a -> Int }{ pattern P v1 v2 .. vn <- p }! unidirectional or { pattern P v1 v2 .. vn = p }! implicit bidirectional or ?{ pattern P v1 v2 .. vn <- p where P v1 v2 .. vn = e } explicit bidirectionalbalso, besides prefix pattern synonyms, both infix and record pattern synonyms are supported. See  for details#A pattern synonym's type signature. f x { | odd x } = x &f x { | Just y <- x, Just z <- y } = z +f p { | e1 = e2 | e3 = e4 } where ds f p { = e } where ds { x } "data T1 = C1 t1 t2; p = {C1} e1 e2  { 5 or 'c'} { f x } @{ f @Int } %{x + y} or {(x+)} or {(+ x)} or {(+)} {x + y}See  Language.Haskell.TH.Syntax#infix  { (e) }See  Language.Haskell.TH.Syntax#infix { \ p1 p2 -> e } { \case m1; m2 }  { (e1,e2) } { (# e1,e2 #) }  { (#|e|#) } { if e1 then e2 else e3 } { if | g1 -> e1 | g2 -> e2 } { let x=e1; y=e2 in e3 } { case e of m1; m2 } { do { p <- e1; e2 } }  { [ (x,y) | x <- xs, y <- ys ] }3The result expression of the comprehension is the last of the s, and should be a .E.g. translation: [ f x | x <- xs ] BCompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))] { [ 1 ,2 .. 10 ] }  { [1,2,3] }  { e :: t } { T { x = y, z = w } } { (f x) { z = w } }  { static e }{ _x } (hole) f { p1 p2 = body where decs } $case e of { pat -> body where decs }  { 5 or 'c' } { x }  { (p1,p2) }! { (# p1,p2 #) }"  { (#|p|#) }# "data T1 = C1 t1 t2; {C1 p1 p1} = e$ foo ({x :+ y}) = e% foo ({x :+ y}) = eSee  Language.Haskell.TH.Syntax#infix& {(p)}See  Language.Haskell.TH.Syntax#infix' { ~p }( { !p })  { x @ p }* { _ }+ f (Pt { pointx = x }) = g x,  { [1,2,3] }-  { p :: t }.  { e -> p }2Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter?8&A primitive C-style string, type Addr#@@G desribes a single instance of a class or type function. It is just a ,, but guaranteed to be one of the following: (with empty []) or  (with empty derived [])AIn M#, is the type constructor unlifted?BIn M, arity of the type constructorCIn , , and ", the total number of Ds. For example, (#|#) has a C of 2.DIn  and "=, the number associated with a particular data constructor. DJs are one-indexed and should never exceed the value of its corresponding C. For example:(#_|#) has D 1 (out of a total C of 2)(#|_#) has D 2 (out of a total C of 2)EIn J and N", name of the parent class or typeFObtained from  in the  Monad.G'Contains the import list of the module.HObtained from  in the  Monad.I-A class, with a list of its visible instancesJA class methodKKA "plain" type constructor. "Fancier" type constructors are returned using M or L as appropriateLpA type or data family, with a list of its visible instances. A closed type family is returned with 0 instances.M@A "primitive" type constructor, which can't be expressed with a  . Examples: (->), Int#.NA data constructorOA pattern synonym.P7A "value" variable (as opposed to a type variable, see Q).The  Maybe Dec field contains Justc the declaration which defined the variable -- including the RHS of the declaration -- or else Nothinga, in the case where the RHS is unavailable to the compiler. At present, this value is _always_ NothingQ: returning the RHS has not yet been implemented because of lack of interest.QA type variable.The TypeT field contains the type which underlies the variable. At present, this is always | theName5, but future changes may permit refinement of this.` VariablesaData constructorsbPType constructors and classes; Haskell has them in the same name space for now.d&An unqualified name; dynamically bounde#A qualified name; dynamically boundfA unique local nameg&Local name bound outside of the TH ASThGlobal name bound outside of the TH AST: An original name (occurrences only, not binders) Need the namespace too to be sure which thing we are naminglObtained from  and  thisModule.Input/output (dangerous)>Report an error (True) or warning (False), but carry on; use  to stop.sReport an error to the user, but allow the current splice's computation to carry on. To abort the computation, use .+Report a warning to the user, and carry on.Recover from errors raised by  or .RLook up the given name in the (type namespace of the) current splice's scope. See %Language.Haskell.TH.Syntax#namelookup for more details.SLook up the given name in the (value namespace of the) current splice's scope. See %Language.Haskell.TH.Syntax#namelookup for more details. looks up information about the .<It is sometimes useful to construct the argument name using  or X to ensure that we are reifying from the right namespace. For instance, in this context:  data D = Dwhich D does reify (mkName "D")$ return information about? (Answer: DE-the-type, but don't rely on it.) To ensure we get information about D-the-value, use : .do Just nm <- lookupValueName "D" reify nmand to get information about D-the-type, use .reifyFixity nm+ attempts to find a fixity declaration for nm. For example, if the function foo has the fixity declaration  infixr 7 foo, then reifyFixity 'foo would return  (> 7 <). If the function bar* does not have a fixity declaration, then reifyFixity 'bar returns , so you may assume bar has .reifyInstances nm tys( returns a list of visible instances of nm tys. That is, if nmL is the name of a type class, then all instances of this class at the types tys! are returned. Alternatively, if nmX is the name of a data family or type family, all instances of this family at the types tys are returned. reifyRoles nmG returns the list of roles associated with the parameters of the tycon nm . Fails if nmK cannot be found or is not a tycon. The returned list should never contain n.reifyAnnotations target2 returns the list of annotations associated with targetS. Only the annotations that are appropriately typed is returned. So if you have Int and StringH annotations for the same target, you have to call this function twice.reifyModule mod# looks up information about module modP. To look up the current module, call this function with the return value of  thisModule.reifyConStrictness nmV looks up the strictness information for the fields of the constructor with the name nm-. Note that the strictness information that s returns may not correspond to what is written in the source code. For example, in the following data declaration: data Pair a = Pair a a  would return [, DecidedLazy]0 under most circumstances, but it would return [, DecidedStrict] if the  -XStrictData language extension was enabled.%Is the list of instances returned by  nonempty?2The location at which this computation is spliced.The 1 function lets you run an I/O computation in the @ monad. Take care: you are guaranteed the ordering of calls to  within a single ? computation, but not about the order in which splices are run.Note: for various murky reasons, stdout and stderr handles are not necessarily flushed when the compiler finishes running, so you should flush them yourself.Record external files that runIO is using (dependent upon). The compiler can then recognize that it should re-compile the Haskell file when an external file changes.Expects an absolute file path.Notes:Gghc -M does not know about these dependencies - it does not execute TH.@The dependency is based on file content, not a modification time}Add additional top-level declarations. The added declarations will be type checked along with the current declaration group.Emit a foreign file which will be compiled and linked to the object for the current module. Currently only languages that can be compiled with the C compiler are supported, and the flags passed as part of -optc will be also applied to the C compiler invocation that will compile them.0Note that for non-C languages (for example C++) extern CI directives must be used to get symbols that we can access from Haskell.YTo get better errors, it is reccomended to use #line pragmas when emitting C files, e.g. {-# LANGUAGE CPP #-} ... addForeignFile LangC $ unlines [ "#line " ++ show (478 + 1) ++ " " ++ show "Language/Haskell/TH/Syntax.hs" , ... ]Add a finalizer that will run in the Q monad after the current module has been type checked. This only makes sense when run within a top-level splice.MThe finalizer is given the local type environment at the splice point. Thus K is able to find the local definitions when executed inside the finalizer.Get state from the q monad. Note that the state is local to the Haskell module in which the Template Haskell expression is executed.Replace the state in the q monad. Note that the state is local to the Haskell module in which the Template Haskell expression is executed.ADetermine whether the given language extension is enabled in the  monad.%List all enabled language extensions.` is an internal utility function for constructing generic conversion functions from types with I instances to various quasi-quoting representations. See the source of  and  for two example usages: mkCon, mkLit and appQQ are overloadable to account for different syntax for expressions and patterns; antiQE allows you to override type-specific cases, a common usage is just  const Nothing#, which results in no overloading. converts a value to a 'Q Exp' representation of the same value, in the SYB style. It is generalized to take a function override type-specific cases; see # for a more commonly used variant. is a variant of  in the - type class which works for any type with a  instance. converts a value to a 'Q Pat' representation of the same value, in the SYB style. It takes a function to handle type-specific cases, alternatively, pass  const Nothing to get default behavior.#The name without its module prefix.ExamplesnameBase ''Data.Either.Either"Either"nameBase (mkName "foo")"foo"nameBase (mkName "Module.foo")"foo"&Module prefix of a name, if it exists.ExamplesnameModule ''Data.Either.EitherJust "Data.Either"nameModule (mkName "foo")Nothing nameModule (mkName "Module.foo") Just "Module"A name's package, if it exists.Examples namePackage ''Data.Either.Either Just "base"namePackage (mkName "foo")Nothing!namePackage (mkName "Module.foo")NothingJReturns whether a name represents an occurrence of a top-level variable (`), data constructor (a%), type constructor, or type class (b#). If we can't be sure, it returns .ExamplesnameSpace 'Prelude.id Just VarNamenameSpace (mkName "id")2Nothing -- only works for top-level variable namesnameSpace 'Data.Maybe.Just Just DataNamenameSpace ''Data.Maybe.MaybeJust TcClsNamenameSpace ''Data.Ord.OrdJust TcClsNameOnly used internally4Used for 'x etc, but not available to the programmerTuple data constructorTuple type constructorUnboxed tuple data constructorUnboxed tuple type constructorUnboxed sum data constructorUnboxed sum type constructor(Highest allowed operator precedence for > constructor (answer: 9)Default fixity: infixl 9  (Eq a, Ord b)RLine and character positionu Fresh namesv@Report an error (True) or warning (False) ...but carry on; use  to stopwthe error handleraction which may failRecover from the monadic handler to invoke on failurecomputation to run      rs# !"$%&'()*+,-.yz{|}~iwx ra`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"!      fedcbghijklmnopqstuv/2301456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ][\^_a`bchdefgjklmnopqtuvwxyz{|}~tuvwxyz{|}~rs pqnolmjkicdefgh_`ab^  Z[\]STUVWXYRHIJKLMNOPQFGEDCBA@>?:;<=/0123456789 !"#$%&'()*+,-.     yz{|}~wxstuvropqjklmnghifedcb9     rs !"#$%&'()*+,-.yz{|}~iwx rghijklmnopqstuv/ 0123456789:;<=>?FGH IJKLMNOPQSTUVWXYZ[\]_`abcdefghjklmnopqtuvwxyz{|}~*Quasi-quoting support for Template HaskellSafeQV5Quasi-quoter for expressions, invoked by quotes like lhs = $[q|...]2Quasi-quoter for patterns, invoked by quotes like f $[q|...] = rhs:Quasi-quoter for declarations, invoked by top-level quotes/Quasi-quoter for types, invoked by quotes like  f :: $[q|...]The  type, a value q) of this type can be used in the syntax [q| ... string to parse ...|] . In fact, for convenience, a  actually defines multiple quasiquoters to be used in different splice contexts; if you are only interested in defining a quasiquoter to be used for expressions, you would define a  with only 6, and leave the other fields stubbed out with errors. takes a P and lifts it into one that read the data out of a file. For example, suppose asmqs is an assembly-language quoter, so that you can write [asmq| ld r1, r2 |] as an expression. Then if you define asmq_f = quoteFile asmq<, then the quote [asmq_f|foo.s|] will take input from file "foo.s" instead of the inline text  Safe;=J!Returns  if the document is emptyAn empty documentA ';' characterA ',' characterA : character A "::" stringA space characterA '=' character A "->" stringA '(' characterA ')' characterA '[' characterA ']' characterA '{' characterA '}' characterWrap document in (...)Wrap document in [...]Wrap document in {...}Wrap document in '...'Wrap document in "..."BesideList version of Beside, separated by spaceList version of 5Above; if there is no overlap it "dovetails" the twoAbove, without dovetailing.List version of Either hcat or vcatEither hsep or vcat"Paragraph fill" version of cat"Paragraph fill" version of sepNested "hang d1 n d2 = sep [d1, nest n d2]  @punctuate p [d1, ... dn] = [d1 <> p, d2 <> p, ... dn-1 <> p, dn]/      /      6655Safe2.Pretty prints a pattern synonym type signature3Pretty prints a pattern synonym's type; follows the usual conventions to print a pattern synonym type compactly, yet unambiguously. See the note on S and the section on pattern synonyms in the GHC user's guide for more information.<%'&()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`_)(*,+-./%&'0123~456789}|:;{<=>z?y@ABCDEFGxwvutsrqponmlkHIJKLMjihgNOPQfRSTUedcVWbXYZ[a\]^_`%&'Safe) Use with <* Use with RG staticE x = [| static x |]mPattern synonym declarationnPattern synonym type signature*Dynamically binding a variable (unhygenic)Single-arg lambdaJReturn the Module at the place of splicing. Can be used as an input for . !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~ !"#$%&'(KJLM)*+H,-./G0123456789:;<CDEFI?@AB=>NOPQqrstuv}~pwxyz{|SRVTUWXYkljabfcdeghiZ[\]^_`omn Safeł !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~     # !"$%&'()*+,-.yz{|}~wx ra`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"!      ghijklmnopqstuv/2301456789:;<=>?@ABCDEFGHIJKLMNOPQSTUVWXY_%&'/7<?PSTUVWXYHIJKLMNOPQFG@EDCBAa`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"!      ghi _>?:;<=     /0123456789 !"#$%&'()*+,-.yz{|}~wxopqjklmnstuvr%&'/7<?P     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnmompmqmrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@@ABCDEFGGHIJKLMNOPQRSSTUVWXYZ[\]^_`abcdefghhiijjkklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~template-haskellLanguage.Haskell.TH.SyntaxLanguage.Haskell.TH.LibLanguage.Haskell.TH.Quote&Language.Haskell.TH.LanguageExtensionsLanguage.Haskell.TH.PprLibLanguage.Haskell.TH.PprLanguage.Haskell.TH.Lib.MapdynLanguage.Haskell.THreturnQbindQ sequenceQliftnewNamemkName mkNameG_v mkNameG_d mkNameG_tcmkNameLmkNameSunTypeunTypeQunsafeTExpCoercecharLstringLintegerLintPrimL wordPrimL floatPrimL doublePrimL rationalL stringPrimL charPrimL liftStringlitPvarPtupP unboxedTupP unboxedSumPconPinfixPtildePbangPasPwildPrecPlistPsigPviewPfieldPatmatchclausevarEconElitEappEappTypeEinfixEinfixAppsectionLsectionRlamElamCaseEtupE unboxedTupE unboxedSumEcondEmultiIfEletEcaseEdoEcompEfromE fromThenEfromToE fromThenToElistEsigErecConErecUpdEstaticE unboundVarEfieldExpguardedBnormalBnormalGEpatGEbindSletSnoBindSparSfunDvalDdataDnewtypeDtySynDclassDinstanceWithOverlapDsigDforImpDpragInlD pragSpecD pragSpecInlD pragSpecInstD pragRuleDpragAnnD dataFamilyDopenTypeFamilyD dataInstD newtypeInstD tySynInstDclosedTypeFamilyDinfixLDinfixRDinfixND roleAnnotDstandaloneDerivWithStrategyD defaultSigDpatSynD patSynSigD pragCompleteDcxtnoSourceUnpackednesssourceNoUnpack sourceUnpacknoSourceStrictness sourceLazy sourceStrictnormalCrecCinfixCforallCgadtCrecGadtCbangbangType varBangTypeunidir implBidir explBidir prefixPatSyn infixPatSyn recordPatSynforallTvarTconTtupleT unboxedTupleT unboxedSumTarrowTlistTappTsigT equalityTlitT promotedTpromotedTupleT promotedNilT promotedConsT wildCardTnumTyLitstrTyLitplainTVkindedTVnominalRrepresentationalRphantomRinferRvarKconKtupleKarrowKlistKappKstarK constraintKnoSigkindSigtyVarSiginjectivityAnncCallstdCallcApiprim javaScriptunsafesafe interruptiblefunDeptypeFamdataFamtySynEqnquoteExpquotePatquoteDec quoteTyperuleVar typedRuleVarvalueAnnotationtypeAnnotationmoduleAnnotation derivClauseLiftExpMatchClauseQExpQDecQPatMatchQClauseQStmtQConQTypeQTypeDec BangTypeQ VarBangTypeQFieldExpFieldPatNamePatQ FieldPatQ FieldExpQFunDepPredPredQ TyVarBndrDecsQ RuleBndrQ TySynEqnQTExpInjectivityAnnKindOverlap DerivClauseQ DerivStrategyNoInlineInline InlinableConLikeFunLike AllPhases FromPhase BeforePhase Overlappable OverlappingOverlaps Incoherent StockStrategyAnyclassStrategyNewtypeStrategyghc-boot-th-8.2.1GHC.LanguageExtensions.TypeMonadFailDesugaring StrictDataStrictTypeApplicationsStaticPointersNamedWildCardsPartialTypeSignaturesPatternSynonyms EmptyCaseOverloadedLabelsDuplicateRecordFieldsNegativeLiteralsBinaryLiterals MultiWayIf LambdaCaseTraditionalRecordSyntax RelaxedLayoutNondecreasingIndentationDatatypeContexts!AlternativeLayoutRuleTransitionalAlternativeLayoutRuleExplicitForAllPackageImportsExplicitNamespaces TypeOperatorsImpredicativeTypes RankNTypesLiberalTypeSynonyms PatternGuards TupleSectionsPostfixOperators RecursiveDoGeneralizedNewtypeDerivingMonadComprehensionsTransformListCompParallelListCompRoleAnnotationsKindSignaturesEmptyDataDecls MagicHashExistentialQuantification UnicodeSyntaxFunctionalDependenciesNullaryTypeClassesMultiParamTypeClassesConstrainedClassMethodsFlexibleInstancesFlexibleContextsTypeSynonymInstancesDerivingStrategies DeriveLiftDeriveAnyClassDefaultSignatures DeriveGenericDeriveFoldableDeriveTraversable DeriveFunctorAutoDeriveTypeableDeriveDataTypeableStandaloneDeriving ApplicativeDo InstanceSigs DataKinds PolyKindsConstraintKindsRebindableSyntaxDoAndIfThenElseNPlusKPatterns GADTSyntaxGADTs ViewPatterns RecordPunsRecordWildCardsDisambiguateRecordFields NumDecimalsOverloadedListsOverloadedStrings TypeInTypeTypeFamilyDependencies TypeFamilies BangPatterns UnboxedSums UnboxedTuplesAllowAmbiguousTypesScopedTypeVariablesImplicitPreludeImplicitParams QuasiQuotesTemplateHaskellQuotesTemplateHaskellArrowsParallelArrays JavaScriptFFIGHCForeignImportPrimCApiFFIInterruptibleFFIUnliftedFFITypesForeignFunctionInterfaceExtendedDefaultRulesRelaxedPolyRecMonoLocalBinds MonoPatBindsMonomorphismRestrictionUndecidableSuperClassesIncoherentInstancesUndecidableInstancesOverlappingInstancesCpp ExtensionGHC.ForeignSrcLang.Type LangObjcxxLangObjcLangCxxLangCForeignSrcLang AnnLookupAnnLookupModule AnnLookupNameRoleNominalRRepresentationalRPhantomRInferRTyLitNumTyLitStrTyLitFamilyResultSigNoSigKindSigTyVarSigPlainTVKindedTVForallTAppTSigTVarTConT PromotedTInfixTUInfixTParensTTupleT UnboxedTupleT UnboxedSumTArrowT EqualityTListTPromotedTupleT PromotedNilT PromotedConsTStarT ConstraintTLitT WildCardT PatSynArgs PrefixPatSyn InfixPatSyn RecordPatSyn PatSynDirUnidir ImplBidir ExplBidir VarStrictType StrictType VarBangTypeBangTypeBangConNormalCRecCInfixCForallCGadtCRecGadtCDecidedStrictness DecidedLazy DecidedStrict DecidedUnpackSourceStrictnessNoSourceStrictness SourceLazy SourceStrictSourceUnpackednessNoSourceUnpackednessSourceNoUnpack SourceUnpackCxt AnnTargetModuleAnnotationTypeAnnotationValueAnnotationRuleBndrRuleVar TypedRuleVarPhases RuleMatchPragmaInlineP SpecialisePSpecialiseInstPRulePAnnPLineP CompletePSafetyUnsafeSafe InterruptibleCallconvCCallStdCallCApiPrim JavaScriptForeignImportFExportF FamFlavourTypeFamDataFamTySynEqnTypeFamilyHead PatSynType DerivClauseFunDValDDataDNewtypeDTySynDClassD InstanceDSigDForeignDInfixDPragmaD DataFamilyD DataInstD NewtypeInstD TySynInstDOpenTypeFamilyDClosedTypeFamilyD RoleAnnotDStandaloneDerivD DefaultSigDPatSynD PatSynSigDRangeFromR FromThenRFromToR FromThenToRStmtBindSLetSNoBindSParSGuardNormalGPatGBodyGuardedBNormalBVarEConELitEAppEAppTypeEInfixEUInfixEParensELamELamCaseETupE UnboxedTupE UnboxedSumECondEMultiIfELetECaseEDoECompE ArithSeqEListESigERecConERecUpdEStaticE UnboundVarELitPVarPTupP UnboxedTupP UnboxedSumPConPInfixPUInfixPParensPTildePBangPAsPWildPRecPListPSigPViewPLitCharLStringLIntegerL RationalLIntPrimL WordPrimL FloatPrimL DoublePrimL StringPrimL CharPrimLFixityDirectionInfixLInfixRInfixNFixity InstanceDecUnliftedAritySumAritySumAlt ParentName ModuleInfoInfoClassIClassOpITyConIFamilyI PrimTyConIDataConIPatSynIVarITyVarICharPosLoc loc_filename loc_package loc_module loc_startloc_endNameIsAloneAppliedInfixUniq NameSpaceVarNameDataName TcClsName NameFlavourNameSNameQNameUNameLNameGOccNameModulePkgNameModNameunQQuasiqNewNameqReportqRecover qLookupNameqReify qReifyFixityqReifyInstances qReifyRolesqReifyAnnotations qReifyModuleqReifyConStrictness qLocationqRunIOqAddDependentFile qAddTopDeclsqAddForeignFileqAddModFinalizerqGetQqPutQ qIsExtEnabled qExtsEnabledbadIOcounterrunQreport reportError reportWarningrecover lookupNamelookupTypeNamelookupValueNamereify reifyFixityreifyInstances reifyRolesreifyAnnotations reifyModulereifyConStrictness isInstancelocationrunIOaddDependentFile addTopDeclsaddForeignFileaddModFinalizergetQputQ isExtEnabled extsEnabledtrueName falseName nothingNamejustNameleftName rightNamedataToQa dataToExpQliftData dataToPatQ mkModName modString mkPkgName pkgString mkOccName occStringnameBase nameModule namePackage nameSpacemkNameUmkNameGshowName showName' tupleDataName tupleTypeName mk_tup_nameunboxedTupleDataNameunboxedTupleTypeNamemk_unboxed_tup_nameunboxedSumDataNameunboxedSumTypeName maxPrecedence defaultFixitycmpEqthenCmp $fShowName $fOrdName$fQuasiQ$fApplicativeQ $fFunctorQ $fMonadFailQ$fMonadQ $fQuasiIO$fLift(,,,,,,) $fLift(,,,,,) $fLift(,,,,) $fLift(,,,) $fLift(,,) $fLift(,)$fLift()$fLift[] $fLiftEither $fLiftMaybe $fLiftBool $fLiftChar $fLiftDouble $fLiftFloat $fLiftRatio $fLiftNatural $fLiftWord64 $fLiftWord32 $fLiftWord16 $fLiftWord8 $fLiftWord $fLiftInt64 $fLiftInt32 $fLiftInt16 $fLiftInt8 $fLiftInt $fLiftInteger $fShowModName $fEqModName $fOrdModName $fDataModName$fGenericModName $fShowPkgName $fEqPkgName $fOrdPkgName $fDataPkgName$fGenericPkgName $fShowModule $fEqModule $fOrdModule $fDataModule$fGenericModule $fShowOccName $fEqOccName $fOrdOccName $fDataOccName$fGenericOccName $fEqNameSpace$fOrdNameSpace$fShowNameSpace$fDataNameSpace$fGenericNameSpace$fDataNameFlavour$fEqNameFlavour$fOrdNameFlavour$fShowNameFlavour$fGenericNameFlavour $fDataName$fEqName $fGenericName $fShowLoc$fEqLoc$fOrdLoc $fDataLoc $fGenericLoc$fShowModuleInfo$fEqModuleInfo$fOrdModuleInfo$fDataModuleInfo$fGenericModuleInfo$fEqFixityDirection$fOrdFixityDirection$fShowFixityDirection$fDataFixityDirection$fGenericFixityDirection $fEqFixity $fOrdFixity $fShowFixity $fDataFixity$fGenericFixity $fShowLit$fEqLit$fOrdLit $fDataLit $fGenericLit $fShowOverlap $fEqOverlap $fOrdOverlap $fDataOverlap$fGenericOverlap$fShowDerivStrategy$fEqDerivStrategy$fOrdDerivStrategy$fDataDerivStrategy$fGenericDerivStrategy $fShowFunDep $fEqFunDep $fOrdFunDep $fDataFunDep$fGenericFunDep$fShowFamFlavour$fEqFamFlavour$fOrdFamFlavour$fDataFamFlavour$fGenericFamFlavour$fShowCallconv $fEqCallconv $fOrdCallconv$fDataCallconv$fGenericCallconv $fShowSafety $fEqSafety $fOrdSafety $fDataSafety$fGenericSafety $fShowInline $fEqInline $fOrdInline $fDataInline$fGenericInline$fShowRuleMatch $fEqRuleMatch$fOrdRuleMatch$fDataRuleMatch$fGenericRuleMatch $fShowPhases $fEqPhases $fOrdPhases $fDataPhases$fGenericPhases$fShowAnnTarget $fEqAnnTarget$fOrdAnnTarget$fDataAnnTarget$fGenericAnnTarget$fShowSourceUnpackedness$fEqSourceUnpackedness$fOrdSourceUnpackedness$fDataSourceUnpackedness$fGenericSourceUnpackedness$fShowSourceStrictness$fEqSourceStrictness$fOrdSourceStrictness$fDataSourceStrictness$fGenericSourceStrictness$fShowDecidedStrictness$fEqDecidedStrictness$fOrdDecidedStrictness$fDataDecidedStrictness$fGenericDecidedStrictness $fShowBang$fEqBang $fOrdBang $fDataBang $fGenericBang$fShowPatSynArgs$fEqPatSynArgs$fOrdPatSynArgs$fDataPatSynArgs$fGenericPatSynArgs$fShowInjectivityAnn$fEqInjectivityAnn$fOrdInjectivityAnn$fDataInjectivityAnn$fGenericInjectivityAnn $fShowTyLit $fEqTyLit $fOrdTyLit $fDataTyLit$fGenericTyLit $fShowRole$fEqRole $fOrdRole $fDataRole $fGenericRole$fShowAnnLookup $fEqAnnLookup$fOrdAnnLookup$fDataAnnLookup$fGenericAnnLookup $fShowType$fEqType $fOrdType $fDataType $fGenericType$fShowTyVarBndr $fEqTyVarBndr$fOrdTyVarBndr$fDataTyVarBndr$fGenericTyVarBndr$fShowFamilyResultSig$fEqFamilyResultSig$fOrdFamilyResultSig$fDataFamilyResultSig$fGenericFamilyResultSig$fShowTypeFamilyHead$fEqTypeFamilyHead$fOrdTypeFamilyHead$fDataTypeFamilyHead$fGenericTypeFamilyHead $fShowCon$fEqCon$fOrdCon $fDataCon $fGenericCon$fShowDerivClause$fEqDerivClause$fOrdDerivClause$fDataDerivClause$fGenericDerivClause$fShowRuleBndr $fEqRuleBndr $fOrdRuleBndr$fDataRuleBndr$fGenericRuleBndr $fShowForeign $fEqForeign $fOrdForeign $fDataForeign$fGenericForeign$fShowTySynEqn $fEqTySynEqn $fOrdTySynEqn$fDataTySynEqn$fGenericTySynEqn $fShowDec$fEqDec$fOrdDec $fDataDec $fGenericDec$fShowPatSynDir $fEqPatSynDir$fOrdPatSynDir$fDataPatSynDir$fGenericPatSynDir $fShowClause $fEqClause $fOrdClause $fDataClause$fGenericClause $fShowBody$fEqBody $fOrdBody $fDataBody $fGenericBody $fShowGuard $fEqGuard $fOrdGuard $fDataGuard$fGenericGuard $fShowStmt$fEqStmt $fOrdStmt $fDataStmt $fGenericStmt $fShowExp$fEqExp$fOrdExp $fDataExp $fGenericExp $fShowRange $fEqRange $fOrdRange $fDataRange$fGenericRange $fShowMatch $fEqMatch $fOrdMatch $fDataMatch$fGenericMatch $fShowPat$fEqPat$fOrdPat $fDataPat $fGenericPat $fShowPragma $fEqPragma $fOrdPragma $fDataPragma$fGenericPragma $fShowInfo$fEqInfo $fOrdInfo $fDataInfo $fGenericInfo QuasiQuoter quoteFileDocPprMpprNamepprName' to_HPJ_DocisEmptyemptysemicommacolondcolonspaceequalsarrowlparenrparenlbrackrbracklbracerbracetextptextcharintintegerfloatdoublerationalparensbracketsbracesquotes doubleQuotes<>hcat<+>hsep$$$+$vcatcatsepfcatfsepnesthang punctuate $fMonadPprM$fApplicativePprM $fFunctorPprM $fShowPprMPprpprppr_list Precedence nestDepthappPrecopPrecunopPrecnoPrecparensIfpprintppr_sig pprFixity pprPatSynSig pprPatSynType pprPrefixOccisSymOcc pprInfixExppprExp pprFields pprMaybeExp pprGuardedpprBodypprLit bytesToString pprStringpprPatppr_decppr_deriv_strategy ppr_overlapppr_data ppr_newtypeppr_deriv_clause ppr_tySyn ppr_tf_headcommaSepApplied pprForall pprRecFields pprGadtRHSpprVarBangType pprBangTypepprVarStrictType pprStrictType pprParendType pprUInfixTpprTyApp pprFunArgTypesplitpprTyLitpprCxt ppr_cxt_preds where_clause showtextl hashParens quoteParenscommaSep commaSepWithsemiSepunboxedSumBarsbar$fPprLoc $fPprRange $fPprRole$fPprTyVarBndr $fPprTyLit $fPprType$fPprDecidedStrictness$fPprSourceStrictness$fPprSourceUnpackedness $fPprBang$fPprPatSynArgs$fPprPatSynDir$fPprCon $fPprClause $fPprRuleBndr $fPprPhases$fPprRuleMatch $fPprInline $fPprPragma $fPprForeign$fPprInjectivityAnn$fPprFamilyResultSig$fPprFamFlavour $fPprFunDep$fPprDec$fPprPat$fPprLit $fPprMatch $fPprStmt$fPprExp$fPprModuleInfo $fPprModule $fPprInfo $fPprName$fPpr[] PatSynArgsQ PatSynDirQVarStrictTypeQ StrictTypeQBangQSourceUnpackednessQSourceStrictnessQRangeQGuardQBodyQCxtQTyLitQTExpQInfoQuInfixPparensPfromR fromThenRfromToR fromThenToRnormalGpatGparensEuInfixElam1E arithSeqEstringE instanceD pragLineD familyNoKindD familyKindDclosedTypeFamilyNoKindDclosedTypeFamilyKindDstandaloneDerivDinfixTuInfixTparensTclassPequalPisStrict notStrictunpacked strictType varStrictTypeappsE thisModuleMaplookupinsertBinTipbaseGHC.BasefailJustNothing Data.DataDataghc-prim GHC.TypesTruerunPprM