<<< tex {}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!} >>> native [ ESub (EGrouped []) (EIdentifier "p") , ESub (EIdentifier "F") (EIdentifier "q") , ESymbol Open "(" , ESub (EIdentifier "a") (ENumber "1") , ESymbol Pun "," , ESymbol Ord "\8230" , ESymbol Pun "," , ESub (EIdentifier "a") (EIdentifier "p") , ESymbol Pun ";" , ESub (EIdentifier "c") (ENumber "1") , ESymbol Pun "," , ESymbol Ord "\8230" , ESymbol Pun "," , ESub (EIdentifier "c") (EIdentifier "q") , ESymbol Pun ";" , EIdentifier "z" , ESymbol Close ")" , ESymbol Rel "=" , EUnderover True (ESymbol Op "\8721") (EGrouped [ EIdentifier "n" , ESymbol Rel "=" , ENumber "0" ]) (ESymbol Ord "\8734") , EFraction NormalFrac (EGrouped [ ESymbol Open "(" , ESub (EIdentifier "a") (ENumber "1") , ESub (ESymbol Close ")") (EIdentifier "n") , ESymbol Ord "\8943" , ESymbol Open "(" , ESub (EIdentifier "a") (EIdentifier "p") , ESub (ESymbol Close ")") (EIdentifier "n") ]) (EGrouped [ ESymbol Open "(" , ESub (EIdentifier "c") (ENumber "1") , ESub (ESymbol Close ")") (EIdentifier "n") , ESymbol Ord "\8943" , ESymbol Open "(" , ESub (EIdentifier "c") (EIdentifier "q") , ESub (ESymbol Close ")") (EIdentifier "n") ]) , EFraction NormalFrac (ESuper (EIdentifier "z") (EIdentifier "n")) (EGrouped [ EIdentifier "n" , ESymbol Ord "!" ]) ]