-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Type-level integers, booleans, lists using type families -- @package tfp @version 1.0 module Type.Base.Proxy data Proxy a Proxy :: Proxy a instance Applicative Proxy instance Functor Proxy module Type.Data.Bool data True true :: Proxy True data False false :: Proxy False not :: Proxy x -> Proxy (Not x) and :: Proxy x -> Proxy y -> Proxy (x :&&: y) or :: Proxy x -> Proxy y -> Proxy (x :||: y) if_ :: Proxy x -> Proxy y -> Proxy z -> Proxy (If x y z) instance Typeable True instance Typeable False instance Show False instance Show True module Type.Data.List data Cons car cdr data Null instance Typeable Cons instance Typeable Null instance Show Null instance (Show car, Show cdr) => Show (Cons car cdr) module Type.Data.Ord compare :: Proxy x -> Proxy y -> Proxy (Compare x y) data LT data EQ data GT isLT :: Proxy c -> Proxy (IsLT c) isEQ :: Proxy c -> Proxy (IsEQ c) isGT :: Proxy c -> Proxy (IsGT c) class (:<:) x y lt :: Proxy x -> Proxy y -> Proxy (LTT x y) class (:<=:) x y le :: Proxy x -> Proxy y -> Proxy (LET x y) class (:==:) x y eq :: Proxy x -> Proxy y -> Proxy (EQT x y) class (:/=:) x y ne :: Proxy x -> Proxy y -> Proxy (NET x y) class (:>=:) x y ge :: Proxy x -> Proxy y -> Proxy (GET x y) class (:>:) x y gt :: Proxy x -> Proxy y -> Proxy (GTT x y) min :: Proxy x -> Proxy y -> Proxy (Min x y) max :: Proxy x -> Proxy y -> Proxy (Max x y) module Type.Data.Num -- | Negate x evaluates to the additive inverse of (i.e., minus) -- x. negate :: Proxy x -> Proxy (Negate x) isPositive :: Proxy x -> Proxy (IsPositive x) isZero :: Proxy x -> Proxy (IsZero x) isNegative :: Proxy x -> Proxy (IsNegative x) isNatural :: Proxy x -> Proxy (IsNatural x) one :: Proxy repr -> Proxy (One repr) succ :: Proxy x -> Proxy (Succ x) pred :: Proxy x -> Proxy (Pred x) isEven :: Proxy x -> Proxy (IsEven x) isOdd :: Proxy x -> Proxy (IsOdd x) add :: Proxy x -> Proxy y -> Proxy (x :+: y) sub :: Proxy x -> Proxy y -> Proxy (x :-: y) mul :: Proxy x -> Proxy y -> Proxy (x :*: y) mul2 :: Proxy x -> Proxy (Mul2 x) pow2 :: Proxy x -> Proxy (Pow2 x) log2Ceil :: Proxy x -> Proxy (Log2Ceil x) divMod :: Proxy x -> Proxy y -> Proxy (DivMod x y) div :: Proxy x -> Proxy y -> Proxy (Div x y) mod :: Proxy x -> Proxy y -> Proxy (Mod x y) div2 :: Proxy x -> Proxy (Div2 x) fac :: Proxy x -> Proxy (Fac x) newtype Singleton d Singleton :: Integer -> Singleton d class Representation r reifyIntegral :: Representation r => Proxy r -> Integer -> (forall s. (Integer s, Repr s ~ r) => Proxy s -> a) -> a class Representation (Repr x) => Integer x where type family Repr x singleton :: Integer x => Singleton x class Integer x => Natural x class Integer x => Positive x class Integer x => Negative x fromInteger :: (Integer x, Num y) => Proxy x -> y reifyPositive :: Representation r => Proxy r -> Integer -> (forall s. (Positive s, Repr s ~ r) => Proxy s -> a) -> Maybe a reifyNegative :: Representation r => Proxy r -> Integer -> (forall s. (Negative s, Repr s ~ r) => Proxy s -> a) -> Maybe a reifyNatural :: Representation r => Proxy r -> Integer -> (forall s. (Natural s, Repr s ~ r) => Proxy s -> a) -> Maybe a instance Integer x => Integer (AssertNat x) instance Integer x => Integer (AssertNeg x) instance Integer x => Integer (AssertPos x) instance (Integer x, IsNegative x ~ True) => Negative x instance (Integer x, IsPositive x ~ True) => Positive x instance (Integer x, IsNatural x ~ True) => Natural x module Data.SizedWord data SizedWord nT instance Natural nT => Bits (SizedWord nT) instance Natural nT => Integral (SizedWord nT) instance Natural nT => Real (SizedWord nT) instance Natural nT => Num (SizedWord nT) instance Natural nT => Enum (SizedWord nT) instance Natural nT => Bounded (SizedWord nT) instance Natural nT => Ord (SizedWord nT) instance Natural nT => Read (SizedWord nT) instance Natural nT => Show (SizedWord nT) instance Natural nT => Eq (SizedWord nT) module Type.Data.Num.Unary -- | Representation name for unary type level numbers. data Unary data Un x data Zero data Succ x zero :: Proxy Zero succ :: Proxy n -> Proxy (Succ n) newtype Singleton n Singleton :: Integer -> Singleton n singleton :: Natural n => Singleton n singletonFromProxy :: Natural n => Proxy n -> Singleton n integerFromSingleton :: Natural n => Singleton n -> Integer integralFromSingleton :: (Natural n, Num a) => Singleton n -> a class Natural n switchNat :: Natural n => f Zero -> (forall m. Natural m => f (Succ m)) -> f n class Natural n => Positive n switchPos :: Positive n => (forall m. Natural m => f (Succ m)) -> f n instance Representation Unary instance Natural n => Integer (Un n) instance Natural n => Positive (Succ n) instance Natural n => Natural (Succ n) instance Natural Zero module Type.Data.Num.Unary.Literal type U0 = Zero type U1 = Succ U0 type U2 = Succ U1 type U3 = Succ U2 type U4 = Succ U3 type U5 = Succ U4 type U6 = Succ U5 type U7 = Succ U6 type U8 = Succ U7 type U9 = Succ U8 type U10 = Succ U9 type U11 = Succ U10 type U12 = Succ U11 type U13 = Succ U12 type U14 = Succ U13 type U15 = Succ U14 type U16 = Succ U15 type U17 = Succ U16 type U18 = Succ U17 type U19 = Succ U18 type U20 = Succ U19 type U21 = Succ U20 type U22 = Succ U21 type U23 = Succ U22 type U24 = Succ U23 type U25 = Succ U24 type U26 = Succ U25 type U27 = Succ U26 type U28 = Succ U27 type U29 = Succ U28 type U30 = Succ U29 type U31 = Succ U30 type U32 = Succ U31 type U33 = Succ U32 type U34 = Succ U33 type U35 = Succ U34 type U36 = Succ U35 type U37 = Succ U36 type U38 = Succ U37 type U39 = Succ U38 type U40 = Succ U39 type U41 = Succ U40 type U42 = Succ U41 type U43 = Succ U42 type U44 = Succ U43 type U45 = Succ U44 type U46 = Succ U45 type U47 = Succ U46 type U48 = Succ U47 type U49 = Succ U48 type U50 = Succ U49 type U51 = Succ U50 type U52 = Succ U51 type U53 = Succ U52 type U54 = Succ U53 type U55 = Succ U54 type U56 = Succ U55 type U57 = Succ U56 type U58 = Succ U57 type U59 = Succ U58 type U60 = Succ U59 type U61 = Succ U60 type U62 = Succ U61 type U63 = Succ U62 type U64 = Succ U63 u0 :: Proxy U0 u1 :: Proxy U1 u2 :: Proxy U2 u3 :: Proxy U3 u4 :: Proxy U4 u5 :: Proxy U5 u6 :: Proxy U6 u7 :: Proxy U7 u8 :: Proxy U8 u9 :: Proxy U9 u10 :: Proxy U10 u11 :: Proxy U11 u12 :: Proxy U12 u13 :: Proxy U13 u14 :: Proxy U14 u15 :: Proxy U15 u16 :: Proxy U16 u17 :: Proxy U17 u18 :: Proxy U18 u19 :: Proxy U19 u20 :: Proxy U20 u21 :: Proxy U21 u22 :: Proxy U22 u23 :: Proxy U23 u24 :: Proxy U24 u25 :: Proxy U25 u26 :: Proxy U26 u27 :: Proxy U27 u28 :: Proxy U28 u29 :: Proxy U29 u30 :: Proxy U30 u31 :: Proxy U31 u32 :: Proxy U32 u33 :: Proxy U33 u34 :: Proxy U34 u35 :: Proxy U35 u36 :: Proxy U36 u37 :: Proxy U37 u38 :: Proxy U38 u39 :: Proxy U39 u40 :: Proxy U40 u41 :: Proxy U41 u42 :: Proxy U42 u43 :: Proxy U43 u44 :: Proxy U44 u45 :: Proxy U45 u46 :: Proxy U46 u47 :: Proxy U47 u48 :: Proxy U48 u49 :: Proxy U49 u50 :: Proxy U50 u51 :: Proxy U51 u52 :: Proxy U52 u53 :: Proxy U53 u54 :: Proxy U54 u55 :: Proxy U55 u56 :: Proxy U56 u57 :: Proxy U57 u58 :: Proxy U58 u59 :: Proxy U59 u60 :: Proxy U60 u61 :: Proxy U61 u62 :: Proxy U62 u63 :: Proxy U63 u64 :: Proxy U64 module Type.Data.Num.Decimal.Digit newtype Singleton d Singleton :: Int -> Singleton d singleton :: C d => Singleton d class C d switch :: C d => f Dec0 -> f Dec1 -> f Dec2 -> f Dec3 -> f Dec4 -> f Dec5 -> f Dec6 -> f Dec7 -> f Dec8 -> f Dec9 -> f d class C d => Pos d switchPos :: (Pos d, Pos d) => f Dec1 -> f Dec2 -> f Dec3 -> f Dec4 -> f Dec5 -> f Dec6 -> f Dec7 -> f Dec8 -> f Dec9 -> f d data Dec0 data Dec1 data Dec2 data Dec3 data Dec4 data Dec5 data Dec6 data Dec7 data Dec8 data Dec9 reify :: Integer -> (forall d. C d => Proxy d -> w) -> w reifyPos :: Integer -> (forall d. Pos d => Proxy d -> w) -> w instance Typeable Dec0 instance Typeable Dec1 instance Typeable Dec2 instance Typeable Dec3 instance Typeable Dec4 instance Typeable Dec5 instance Typeable Dec6 instance Typeable Dec7 instance Typeable Dec8 instance Typeable Dec9 instance Show Dec9 instance C Dec9 instance Pos Dec9 instance Show Dec8 instance C Dec8 instance Pos Dec8 instance Show Dec7 instance C Dec7 instance Pos Dec7 instance Show Dec6 instance C Dec6 instance Pos Dec6 instance Show Dec5 instance C Dec5 instance Pos Dec5 instance Show Dec4 instance C Dec4 instance Pos Dec4 instance Show Dec3 instance C Dec3 instance Pos Dec3 instance Show Dec2 instance C Dec2 instance Pos Dec2 instance Show Dec1 instance C Dec1 instance Pos Dec1 instance Show Dec0 instance C Dec0 module Type.Data.Num.Unary.Proof data Nat x Nat :: Nat x data Pos x Pos :: Pos x natFromPos :: Pos x -> Nat x addNat :: Nat x -> Nat y -> Nat (x :+: y) addPosL :: Pos x -> Nat y -> Pos (x :+: y) addPosR :: Nat x -> Pos y -> Pos (x :+: y) mulNat :: Nat x -> Nat y -> Nat (x :*: y) mulPos :: Pos x -> Pos y -> Pos (x :*: y) module Type.Data.Num.Decimal.Digit.Proof data Nat d Nat :: Nat d data Pos d Pos :: Pos d data UnaryNat d UnaryNat :: UnaryNat d unaryNat :: C d => UnaryNat d unaryNatImpl :: Nat d -> Nat (ToUnary d) data UnaryPos d UnaryPos :: UnaryPos d unaryPos :: Pos d => UnaryPos d unaryPosImpl :: Pos d -> Pos (ToUnary d) module Type.Data.Num.Decimal.Number -- | Representation name for decimal type level numbers. data Decimal decimal :: Proxy n -> Proxy (Dec n) -- | The wrapper type for decimal type level numbers. data Dec x data Zero data Pos x xs data Neg x xs -- | The terminator type for ascending decimal digit lists. data EndAsc data (:<) ds d -- | The terminator type for descending decimal digit lists. data EndDesc data (:>) d ds newtype Singleton x Singleton :: Integer -> Singleton x singleton :: Integer x => Singleton x singletonFromProxy :: Integer n => Proxy n -> Singleton n integerFromSingleton :: Integer n => Singleton n -> Integer integralFromSingleton :: (Integer n, Num a) => Singleton n -> a integralFromProxy :: (Integer n, Num a) => Proxy n -> a class Integer n switch :: Integer n => f Zero -> (forall x xs. (Pos x, Digits xs) => f (Neg x xs)) -> (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n class Integer n => Natural n switchNat :: Natural n => f Zero -> (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n class Natural n => Positive n switchPos :: Positive n => (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n class Integer n => Negative n switchNeg :: Negative n => (forall x xs. (Pos x, Digits xs) => f (Neg x xs)) -> f n reifyIntegral :: Integer -> (forall s. Integer s => Proxy s -> w) -> w reifyNatural :: Integer -> (forall s. Natural s => Proxy s -> a) -> Maybe a reifyPositive :: Integer -> (forall s. Positive s => Proxy s -> a) -> Maybe a reifyNegative :: Integer -> (forall s. Negative s => Proxy s -> a) -> Maybe a reifyPos :: Integer -> (forall x xs. (Pos x, Digits xs) => Proxy (Pos x xs) -> a) -> Maybe a reifyNeg :: Integer -> (forall x xs. (Pos x, Digits xs) => Proxy (Neg x xs) -> a) -> Maybe a class Digits xs switchDigits :: Digits xs => f EndDesc -> (forall xh xl. (C xh, Digits xl) => f (xh :> xl)) -> f xs type (:-:) x y = x :+: Negate y class (:<:) x y class (:<=:) x y class (:==:) x y class (:>:) x y class (:>=:) x y class (:/=:) x y type UnaryAcc m x = ToUnary x :+: (m :*: U10) instance IsEQ (ComparePos x xs y ys) ~ False => Pos x xs :/=: Pos y ys instance IsEQ (ComparePos x xs y ys) ~ False => Neg x xs :/=: Neg y ys instance Zero :/=: Pos y ys instance Neg x xs :/=: Pos y ys instance Pos x xs :/=: Zero instance Neg x xs :/=: Zero instance Pos x xs :/=: Neg y ys instance Zero :/=: Neg y ys instance ComparePos x xs y ys ~ EQ => Pos x xs :==: Pos y ys instance ComparePos x xs y ys ~ EQ => Neg x xs :==: Neg y ys instance Zero :==: Zero instance GreaterPos y ys x xs ~ False => Pos x xs :>=: Pos y ys instance GreaterPos x xs y ys ~ False => Neg x xs :>=: Neg y ys instance Pos x xs :>=: Zero instance Zero :>=: Zero instance Pos x xs :>=: Neg y ys instance Zero :>=: Neg y ys instance ComparePos x xs y ys ~ GT => Pos x xs :>: Pos y ys instance ComparePos x xs y ys ~ LT => Neg x xs :>: Neg y ys instance Pos x xs :>: Zero instance Pos x xs :>: Neg y ys instance Zero :>: Neg y ys instance GreaterPos x xs y ys ~ False => Pos x xs :<=: Pos y ys instance GreaterPos y ys x xs ~ False => Neg x xs :<=: Neg y ys instance Zero :<=: Pos y ys instance Zero :<=: Zero instance Neg x xs :<=: Pos y ys instance Neg x xs :<=: Zero instance ComparePos x xs y ys ~ LT => Pos x xs :<: Pos y ys instance ComparePos x xs y ys ~ GT => Neg x xs :<: Neg y ys instance Zero :<: Pos y ys instance Neg x xs :<: Pos y ys instance Neg x xs :<: Zero instance x :/=: y => Dec x :/=: Dec y instance x :==: y => Dec x :==: Dec y instance x :>: y => Dec x :>: Dec y instance x :>=: y => Dec x :>=: Dec y instance x :<=: y => Dec x :<=: Dec y instance x :<: y => Dec x :<: Dec y instance (C xh, Digits xl) => Digits (xh :> xl) instance Digits EndDesc instance (Pos x, Digits xs) => Negative (Neg x xs) instance (Pos x, Digits xs) => Positive (Pos x xs) instance (Pos x, Digits xs) => Natural (Pos x xs) instance Natural Zero instance (Pos x, Digits xs) => Integer (Pos x xs) instance (Pos x, Digits xs) => Integer (Neg x xs) instance Integer Zero instance Integer x => Integer (Dec x) instance Representation Decimal instance Show EndDesc instance Show EndAsc module Type.Data.Num.Decimal.Literal type Pos1 p0 = Pos p0 (EndDesc) type Pos2 p1 p0 = Pos p1 (p0 :> EndDesc) type Pos3 p2 p1 p0 = Pos p2 (p1 :> (p0 :> EndDesc)) type Pos4 p3 p2 p1 p0 = Pos p3 (p2 :> (p1 :> (p0 :> EndDesc))) type Pos5 p4 p3 p2 p1 p0 = Pos p4 (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))) type Pos6 p5 p4 p3 p2 p1 p0 = Pos p5 (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))) type Pos7 p6 p5 p4 p3 p2 p1 p0 = Pos p6 (p5 :> (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))))) type Neg1 p0 = Neg p0 (EndDesc) type Neg2 p1 p0 = Neg p1 (p0 :> EndDesc) type Neg3 p2 p1 p0 = Neg p2 (p1 :> (p0 :> EndDesc)) type Neg4 p3 p2 p1 p0 = Neg p3 (p2 :> (p1 :> (p0 :> EndDesc))) type Neg5 p4 p3 p2 p1 p0 = Neg p4 (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))) type Neg6 p5 p4 p3 p2 p1 p0 = Neg p5 (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))) type Neg7 p6 p5 p4 p3 p2 p1 p0 = Neg p6 (p5 :> (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))))) type D0 = Zero type D1 = Pos1 Dec1 type D2 = Pos1 Dec2 type D3 = Pos1 Dec3 type D4 = Pos1 Dec4 type D5 = Pos1 Dec5 type D6 = Pos1 Dec6 type D7 = Pos1 Dec7 type D8 = Pos1 Dec8 type D9 = Pos1 Dec9 type D10 = Pos2 Dec1 Dec0 type D11 = Pos2 Dec1 Dec1 type D12 = Pos2 Dec1 Dec2 type D13 = Pos2 Dec1 Dec3 type D14 = Pos2 Dec1 Dec4 type D15 = Pos2 Dec1 Dec5 type D16 = Pos2 Dec1 Dec6 type D17 = Pos2 Dec1 Dec7 type D18 = Pos2 Dec1 Dec8 type D19 = Pos2 Dec1 Dec9 type D20 = Pos2 Dec2 Dec0 type D21 = Pos2 Dec2 Dec1 type D22 = Pos2 Dec2 Dec2 type D23 = Pos2 Dec2 Dec3 type D24 = Pos2 Dec2 Dec4 type D25 = Pos2 Dec2 Dec5 type D26 = Pos2 Dec2 Dec6 type D27 = Pos2 Dec2 Dec7 type D28 = Pos2 Dec2 Dec8 type D29 = Pos2 Dec2 Dec9 type D30 = Pos2 Dec3 Dec0 type D31 = Pos2 Dec3 Dec1 type D32 = Pos2 Dec3 Dec2 type D33 = Pos2 Dec3 Dec3 type D34 = Pos2 Dec3 Dec4 type D35 = Pos2 Dec3 Dec5 type D36 = Pos2 Dec3 Dec6 type D37 = Pos2 Dec3 Dec7 type D38 = Pos2 Dec3 Dec8 type D39 = Pos2 Dec3 Dec9 type D40 = Pos2 Dec4 Dec0 type D41 = Pos2 Dec4 Dec1 type D42 = Pos2 Dec4 Dec2 type D43 = Pos2 Dec4 Dec3 type D44 = Pos2 Dec4 Dec4 type D45 = Pos2 Dec4 Dec5 type D46 = Pos2 Dec4 Dec6 type D47 = Pos2 Dec4 Dec7 type D48 = Pos2 Dec4 Dec8 type D49 = Pos2 Dec4 Dec9 type D50 = Pos2 Dec5 Dec0 type D51 = Pos2 Dec5 Dec1 type D52 = Pos2 Dec5 Dec2 type D53 = Pos2 Dec5 Dec3 type D54 = Pos2 Dec5 Dec4 type D55 = Pos2 Dec5 Dec5 type D56 = Pos2 Dec5 Dec6 type D57 = Pos2 Dec5 Dec7 type D58 = Pos2 Dec5 Dec8 type D59 = Pos2 Dec5 Dec9 type D60 = Pos2 Dec6 Dec0 type D61 = Pos2 Dec6 Dec1 type D62 = Pos2 Dec6 Dec2 type D63 = Pos2 Dec6 Dec3 type D64 = Pos2 Dec6 Dec4 type D65 = Pos2 Dec6 Dec5 type D66 = Pos2 Dec6 Dec6 type D67 = Pos2 Dec6 Dec7 type D68 = Pos2 Dec6 Dec8 type D69 = Pos2 Dec6 Dec9 type D70 = Pos2 Dec7 Dec0 type D71 = Pos2 Dec7 Dec1 type D72 = Pos2 Dec7 Dec2 type D73 = Pos2 Dec7 Dec3 type D74 = Pos2 Dec7 Dec4 type D75 = Pos2 Dec7 Dec5 type D76 = Pos2 Dec7 Dec6 type D77 = Pos2 Dec7 Dec7 type D78 = Pos2 Dec7 Dec8 type D79 = Pos2 Dec7 Dec9 type D80 = Pos2 Dec8 Dec0 type D81 = Pos2 Dec8 Dec1 type D82 = Pos2 Dec8 Dec2 type D83 = Pos2 Dec8 Dec3 type D84 = Pos2 Dec8 Dec4 type D85 = Pos2 Dec8 Dec5 type D86 = Pos2 Dec8 Dec6 type D87 = Pos2 Dec8 Dec7 type D88 = Pos2 Dec8 Dec8 type D89 = Pos2 Dec8 Dec9 type D90 = Pos2 Dec9 Dec0 type D91 = Pos2 Dec9 Dec1 type D92 = Pos2 Dec9 Dec2 type D93 = Pos2 Dec9 Dec3 type D94 = Pos2 Dec9 Dec4 type D95 = Pos2 Dec9 Dec5 type D96 = Pos2 Dec9 Dec6 type D97 = Pos2 Dec9 Dec7 type D98 = Pos2 Dec9 Dec8 type D99 = Pos2 Dec9 Dec9 type D100 = Pos3 Dec1 Dec0 Dec0 type D101 = Pos3 Dec1 Dec0 Dec1 type D102 = Pos3 Dec1 Dec0 Dec2 type D103 = Pos3 Dec1 Dec0 Dec3 type D104 = Pos3 Dec1 Dec0 Dec4 type D105 = Pos3 Dec1 Dec0 Dec5 type D106 = Pos3 Dec1 Dec0 Dec6 type D107 = Pos3 Dec1 Dec0 Dec7 type D108 = Pos3 Dec1 Dec0 Dec8 type D109 = Pos3 Dec1 Dec0 Dec9 type D110 = Pos3 Dec1 Dec1 Dec0 type D111 = Pos3 Dec1 Dec1 Dec1 type D112 = Pos3 Dec1 Dec1 Dec2 type D113 = Pos3 Dec1 Dec1 Dec3 type D114 = Pos3 Dec1 Dec1 Dec4 type D115 = Pos3 Dec1 Dec1 Dec5 type D116 = Pos3 Dec1 Dec1 Dec6 type D117 = Pos3 Dec1 Dec1 Dec7 type D118 = Pos3 Dec1 Dec1 Dec8 type D119 = Pos3 Dec1 Dec1 Dec9 type D120 = Pos3 Dec1 Dec2 Dec0 type D121 = Pos3 Dec1 Dec2 Dec1 type D122 = Pos3 Dec1 Dec2 Dec2 type D123 = Pos3 Dec1 Dec2 Dec3 type D124 = Pos3 Dec1 Dec2 Dec4 type D125 = Pos3 Dec1 Dec2 Dec5 type D126 = Pos3 Dec1 Dec2 Dec6 type D127 = Pos3 Dec1 Dec2 Dec7 type D128 = Pos3 Dec1 Dec2 Dec8 type D129 = Pos3 Dec1 Dec2 Dec9 type D130 = Pos3 Dec1 Dec3 Dec0 type D131 = Pos3 Dec1 Dec3 Dec1 type D132 = Pos3 Dec1 Dec3 Dec2 type D133 = Pos3 Dec1 Dec3 Dec3 type D134 = Pos3 Dec1 Dec3 Dec4 type D135 = Pos3 Dec1 Dec3 Dec5 type D136 = Pos3 Dec1 Dec3 Dec6 type D137 = Pos3 Dec1 Dec3 Dec7 type D138 = Pos3 Dec1 Dec3 Dec8 type D139 = Pos3 Dec1 Dec3 Dec9 type D140 = Pos3 Dec1 Dec4 Dec0 type D141 = Pos3 Dec1 Dec4 Dec1 type D142 = Pos3 Dec1 Dec4 Dec2 type D143 = Pos3 Dec1 Dec4 Dec3 type D144 = Pos3 Dec1 Dec4 Dec4 type D145 = Pos3 Dec1 Dec4 Dec5 type D146 = Pos3 Dec1 Dec4 Dec6 type D147 = Pos3 Dec1 Dec4 Dec7 type D148 = Pos3 Dec1 Dec4 Dec8 type D149 = Pos3 Dec1 Dec4 Dec9 type D150 = Pos3 Dec1 Dec5 Dec0 type D151 = Pos3 Dec1 Dec5 Dec1 type D152 = Pos3 Dec1 Dec5 Dec2 type D153 = Pos3 Dec1 Dec5 Dec3 type D154 = Pos3 Dec1 Dec5 Dec4 type D155 = Pos3 Dec1 Dec5 Dec5 type D156 = Pos3 Dec1 Dec5 Dec6 type D157 = Pos3 Dec1 Dec5 Dec7 type D158 = Pos3 Dec1 Dec5 Dec8 type D159 = Pos3 Dec1 Dec5 Dec9 type D160 = Pos3 Dec1 Dec6 Dec0 type D161 = Pos3 Dec1 Dec6 Dec1 type D162 = Pos3 Dec1 Dec6 Dec2 type D163 = Pos3 Dec1 Dec6 Dec3 type D164 = Pos3 Dec1 Dec6 Dec4 type D165 = Pos3 Dec1 Dec6 Dec5 type D166 = Pos3 Dec1 Dec6 Dec6 type D167 = Pos3 Dec1 Dec6 Dec7 type D168 = Pos3 Dec1 Dec6 Dec8 type D169 = Pos3 Dec1 Dec6 Dec9 type D170 = Pos3 Dec1 Dec7 Dec0 type D171 = Pos3 Dec1 Dec7 Dec1 type D172 = Pos3 Dec1 Dec7 Dec2 type D173 = Pos3 Dec1 Dec7 Dec3 type D174 = Pos3 Dec1 Dec7 Dec4 type D175 = Pos3 Dec1 Dec7 Dec5 type D176 = Pos3 Dec1 Dec7 Dec6 type D177 = Pos3 Dec1 Dec7 Dec7 type D178 = Pos3 Dec1 Dec7 Dec8 type D179 = Pos3 Dec1 Dec7 Dec9 type D180 = Pos3 Dec1 Dec8 Dec0 type D181 = Pos3 Dec1 Dec8 Dec1 type D182 = Pos3 Dec1 Dec8 Dec2 type D183 = Pos3 Dec1 Dec8 Dec3 type D184 = Pos3 Dec1 Dec8 Dec4 type D185 = Pos3 Dec1 Dec8 Dec5 type D186 = Pos3 Dec1 Dec8 Dec6 type D187 = Pos3 Dec1 Dec8 Dec7 type D188 = Pos3 Dec1 Dec8 Dec8 type D189 = Pos3 Dec1 Dec8 Dec9 type D190 = Pos3 Dec1 Dec9 Dec0 type D191 = Pos3 Dec1 Dec9 Dec1 type D192 = Pos3 Dec1 Dec9 Dec2 type D193 = Pos3 Dec1 Dec9 Dec3 type D194 = Pos3 Dec1 Dec9 Dec4 type D195 = Pos3 Dec1 Dec9 Dec5 type D196 = Pos3 Dec1 Dec9 Dec6 type D197 = Pos3 Dec1 Dec9 Dec7 type D198 = Pos3 Dec1 Dec9 Dec8 type D199 = Pos3 Dec1 Dec9 Dec9 type D200 = Pos3 Dec2 Dec0 Dec0 type D201 = Pos3 Dec2 Dec0 Dec1 type D202 = Pos3 Dec2 Dec0 Dec2 type D203 = Pos3 Dec2 Dec0 Dec3 type D204 = Pos3 Dec2 Dec0 Dec4 type D205 = Pos3 Dec2 Dec0 Dec5 type D206 = Pos3 Dec2 Dec0 Dec6 type D207 = Pos3 Dec2 Dec0 Dec7 type D208 = Pos3 Dec2 Dec0 Dec8 type D209 = Pos3 Dec2 Dec0 Dec9 type D210 = Pos3 Dec2 Dec1 Dec0 type D211 = Pos3 Dec2 Dec1 Dec1 type D212 = Pos3 Dec2 Dec1 Dec2 type D213 = Pos3 Dec2 Dec1 Dec3 type D214 = Pos3 Dec2 Dec1 Dec4 type D215 = Pos3 Dec2 Dec1 Dec5 type D216 = Pos3 Dec2 Dec1 Dec6 type D217 = Pos3 Dec2 Dec1 Dec7 type D218 = Pos3 Dec2 Dec1 Dec8 type D219 = Pos3 Dec2 Dec1 Dec9 type D220 = Pos3 Dec2 Dec2 Dec0 type D221 = Pos3 Dec2 Dec2 Dec1 type D222 = Pos3 Dec2 Dec2 Dec2 type D223 = Pos3 Dec2 Dec2 Dec3 type D224 = Pos3 Dec2 Dec2 Dec4 type D225 = Pos3 Dec2 Dec2 Dec5 type D226 = Pos3 Dec2 Dec2 Dec6 type D227 = Pos3 Dec2 Dec2 Dec7 type D228 = Pos3 Dec2 Dec2 Dec8 type D229 = Pos3 Dec2 Dec2 Dec9 type D230 = Pos3 Dec2 Dec3 Dec0 type D231 = Pos3 Dec2 Dec3 Dec1 type D232 = Pos3 Dec2 Dec3 Dec2 type D233 = Pos3 Dec2 Dec3 Dec3 type D234 = Pos3 Dec2 Dec3 Dec4 type D235 = Pos3 Dec2 Dec3 Dec5 type D236 = Pos3 Dec2 Dec3 Dec6 type D237 = Pos3 Dec2 Dec3 Dec7 type D238 = Pos3 Dec2 Dec3 Dec8 type D239 = Pos3 Dec2 Dec3 Dec9 type D240 = Pos3 Dec2 Dec4 Dec0 type D241 = Pos3 Dec2 Dec4 Dec1 type D242 = Pos3 Dec2 Dec4 Dec2 type D243 = Pos3 Dec2 Dec4 Dec3 type D244 = Pos3 Dec2 Dec4 Dec4 type D245 = Pos3 Dec2 Dec4 Dec5 type D246 = Pos3 Dec2 Dec4 Dec6 type D247 = Pos3 Dec2 Dec4 Dec7 type D248 = Pos3 Dec2 Dec4 Dec8 type D249 = Pos3 Dec2 Dec4 Dec9 type D250 = Pos3 Dec2 Dec5 Dec0 type D251 = Pos3 Dec2 Dec5 Dec1 type D252 = Pos3 Dec2 Dec5 Dec2 type D253 = Pos3 Dec2 Dec5 Dec3 type D254 = Pos3 Dec2 Dec5 Dec4 type D255 = Pos3 Dec2 Dec5 Dec5 type D256 = Pos3 Dec2 Dec5 Dec6 type DN1 = Neg1 Dec1 type DN2 = Neg1 Dec2 type DN3 = Neg1 Dec3 type DN4 = Neg1 Dec4 type DN5 = Neg1 Dec5 type DN6 = Neg1 Dec6 type DN7 = Neg1 Dec7 type DN8 = Neg1 Dec8 type DN9 = Neg1 Dec9 type DN10 = Neg2 Dec1 Dec0 type DN11 = Neg2 Dec1 Dec1 type DN12 = Neg2 Dec1 Dec2 type DN13 = Neg2 Dec1 Dec3 type DN14 = Neg2 Dec1 Dec4 type DN15 = Neg2 Dec1 Dec5 type DN16 = Neg2 Dec1 Dec6 type DN17 = Neg2 Dec1 Dec7 type DN18 = Neg2 Dec1 Dec8 type DN19 = Neg2 Dec1 Dec9 type DN20 = Neg2 Dec2 Dec0 type DN21 = Neg2 Dec2 Dec1 type DN22 = Neg2 Dec2 Dec2 type DN23 = Neg2 Dec2 Dec3 type DN24 = Neg2 Dec2 Dec4 type DN25 = Neg2 Dec2 Dec5 type DN26 = Neg2 Dec2 Dec6 type DN27 = Neg2 Dec2 Dec7 type DN28 = Neg2 Dec2 Dec8 type DN29 = Neg2 Dec2 Dec9 type DN30 = Neg2 Dec3 Dec0 type DN31 = Neg2 Dec3 Dec1 type DN32 = Neg2 Dec3 Dec2 type DN33 = Neg2 Dec3 Dec3 type DN34 = Neg2 Dec3 Dec4 type DN35 = Neg2 Dec3 Dec5 type DN36 = Neg2 Dec3 Dec6 type DN37 = Neg2 Dec3 Dec7 type DN38 = Neg2 Dec3 Dec8 type DN39 = Neg2 Dec3 Dec9 type DN40 = Neg2 Dec4 Dec0 type DN41 = Neg2 Dec4 Dec1 type DN42 = Neg2 Dec4 Dec2 type DN43 = Neg2 Dec4 Dec3 type DN44 = Neg2 Dec4 Dec4 type DN45 = Neg2 Dec4 Dec5 type DN46 = Neg2 Dec4 Dec6 type DN47 = Neg2 Dec4 Dec7 type DN48 = Neg2 Dec4 Dec8 type DN49 = Neg2 Dec4 Dec9 type DN50 = Neg2 Dec5 Dec0 type DN51 = Neg2 Dec5 Dec1 type DN52 = Neg2 Dec5 Dec2 type DN53 = Neg2 Dec5 Dec3 type DN54 = Neg2 Dec5 Dec4 type DN55 = Neg2 Dec5 Dec5 type DN56 = Neg2 Dec5 Dec6 type DN57 = Neg2 Dec5 Dec7 type DN58 = Neg2 Dec5 Dec8 type DN59 = Neg2 Dec5 Dec9 type DN60 = Neg2 Dec6 Dec0 type DN61 = Neg2 Dec6 Dec1 type DN62 = Neg2 Dec6 Dec2 type DN63 = Neg2 Dec6 Dec3 type DN64 = Neg2 Dec6 Dec4 type DN65 = Neg2 Dec6 Dec5 type DN66 = Neg2 Dec6 Dec6 type DN67 = Neg2 Dec6 Dec7 type DN68 = Neg2 Dec6 Dec8 type DN69 = Neg2 Dec6 Dec9 type DN70 = Neg2 Dec7 Dec0 type DN71 = Neg2 Dec7 Dec1 type DN72 = Neg2 Dec7 Dec2 type DN73 = Neg2 Dec7 Dec3 type DN74 = Neg2 Dec7 Dec4 type DN75 = Neg2 Dec7 Dec5 type DN76 = Neg2 Dec7 Dec6 type DN77 = Neg2 Dec7 Dec7 type DN78 = Neg2 Dec7 Dec8 type DN79 = Neg2 Dec7 Dec9 type DN80 = Neg2 Dec8 Dec0 type DN81 = Neg2 Dec8 Dec1 type DN82 = Neg2 Dec8 Dec2 type DN83 = Neg2 Dec8 Dec3 type DN84 = Neg2 Dec8 Dec4 type DN85 = Neg2 Dec8 Dec5 type DN86 = Neg2 Dec8 Dec6 type DN87 = Neg2 Dec8 Dec7 type DN88 = Neg2 Dec8 Dec8 type DN89 = Neg2 Dec8 Dec9 type DN90 = Neg2 Dec9 Dec0 type DN91 = Neg2 Dec9 Dec1 type DN92 = Neg2 Dec9 Dec2 type DN93 = Neg2 Dec9 Dec3 type DN94 = Neg2 Dec9 Dec4 type DN95 = Neg2 Dec9 Dec5 type DN96 = Neg2 Dec9 Dec6 type DN97 = Neg2 Dec9 Dec7 type DN98 = Neg2 Dec9 Dec8 type DN99 = Neg2 Dec9 Dec9 type DN100 = Neg3 Dec1 Dec0 Dec0 type DN101 = Neg3 Dec1 Dec0 Dec1 type DN102 = Neg3 Dec1 Dec0 Dec2 type DN103 = Neg3 Dec1 Dec0 Dec3 type DN104 = Neg3 Dec1 Dec0 Dec4 type DN105 = Neg3 Dec1 Dec0 Dec5 type DN106 = Neg3 Dec1 Dec0 Dec6 type DN107 = Neg3 Dec1 Dec0 Dec7 type DN108 = Neg3 Dec1 Dec0 Dec8 type DN109 = Neg3 Dec1 Dec0 Dec9 type DN110 = Neg3 Dec1 Dec1 Dec0 type DN111 = Neg3 Dec1 Dec1 Dec1 type DN112 = Neg3 Dec1 Dec1 Dec2 type DN113 = Neg3 Dec1 Dec1 Dec3 type DN114 = Neg3 Dec1 Dec1 Dec4 type DN115 = Neg3 Dec1 Dec1 Dec5 type DN116 = Neg3 Dec1 Dec1 Dec6 type DN117 = Neg3 Dec1 Dec1 Dec7 type DN118 = Neg3 Dec1 Dec1 Dec8 type DN119 = Neg3 Dec1 Dec1 Dec9 type DN120 = Neg3 Dec1 Dec2 Dec0 type DN121 = Neg3 Dec1 Dec2 Dec1 type DN122 = Neg3 Dec1 Dec2 Dec2 type DN123 = Neg3 Dec1 Dec2 Dec3 type DN124 = Neg3 Dec1 Dec2 Dec4 type DN125 = Neg3 Dec1 Dec2 Dec5 type DN126 = Neg3 Dec1 Dec2 Dec6 type DN127 = Neg3 Dec1 Dec2 Dec7 type DN128 = Neg3 Dec1 Dec2 Dec8 type DN129 = Neg3 Dec1 Dec2 Dec9 type DN130 = Neg3 Dec1 Dec3 Dec0 type DN131 = Neg3 Dec1 Dec3 Dec1 type DN132 = Neg3 Dec1 Dec3 Dec2 type DN133 = Neg3 Dec1 Dec3 Dec3 type DN134 = Neg3 Dec1 Dec3 Dec4 type DN135 = Neg3 Dec1 Dec3 Dec5 type DN136 = Neg3 Dec1 Dec3 Dec6 type DN137 = Neg3 Dec1 Dec3 Dec7 type DN138 = Neg3 Dec1 Dec3 Dec8 type DN139 = Neg3 Dec1 Dec3 Dec9 type DN140 = Neg3 Dec1 Dec4 Dec0 type DN141 = Neg3 Dec1 Dec4 Dec1 type DN142 = Neg3 Dec1 Dec4 Dec2 type DN143 = Neg3 Dec1 Dec4 Dec3 type DN144 = Neg3 Dec1 Dec4 Dec4 type DN145 = Neg3 Dec1 Dec4 Dec5 type DN146 = Neg3 Dec1 Dec4 Dec6 type DN147 = Neg3 Dec1 Dec4 Dec7 type DN148 = Neg3 Dec1 Dec4 Dec8 type DN149 = Neg3 Dec1 Dec4 Dec9 type DN150 = Neg3 Dec1 Dec5 Dec0 type DN151 = Neg3 Dec1 Dec5 Dec1 type DN152 = Neg3 Dec1 Dec5 Dec2 type DN153 = Neg3 Dec1 Dec5 Dec3 type DN154 = Neg3 Dec1 Dec5 Dec4 type DN155 = Neg3 Dec1 Dec5 Dec5 type DN156 = Neg3 Dec1 Dec5 Dec6 type DN157 = Neg3 Dec1 Dec5 Dec7 type DN158 = Neg3 Dec1 Dec5 Dec8 type DN159 = Neg3 Dec1 Dec5 Dec9 type DN160 = Neg3 Dec1 Dec6 Dec0 type DN161 = Neg3 Dec1 Dec6 Dec1 type DN162 = Neg3 Dec1 Dec6 Dec2 type DN163 = Neg3 Dec1 Dec6 Dec3 type DN164 = Neg3 Dec1 Dec6 Dec4 type DN165 = Neg3 Dec1 Dec6 Dec5 type DN166 = Neg3 Dec1 Dec6 Dec6 type DN167 = Neg3 Dec1 Dec6 Dec7 type DN168 = Neg3 Dec1 Dec6 Dec8 type DN169 = Neg3 Dec1 Dec6 Dec9 type DN170 = Neg3 Dec1 Dec7 Dec0 type DN171 = Neg3 Dec1 Dec7 Dec1 type DN172 = Neg3 Dec1 Dec7 Dec2 type DN173 = Neg3 Dec1 Dec7 Dec3 type DN174 = Neg3 Dec1 Dec7 Dec4 type DN175 = Neg3 Dec1 Dec7 Dec5 type DN176 = Neg3 Dec1 Dec7 Dec6 type DN177 = Neg3 Dec1 Dec7 Dec7 type DN178 = Neg3 Dec1 Dec7 Dec8 type DN179 = Neg3 Dec1 Dec7 Dec9 type DN180 = Neg3 Dec1 Dec8 Dec0 type DN181 = Neg3 Dec1 Dec8 Dec1 type DN182 = Neg3 Dec1 Dec8 Dec2 type DN183 = Neg3 Dec1 Dec8 Dec3 type DN184 = Neg3 Dec1 Dec8 Dec4 type DN185 = Neg3 Dec1 Dec8 Dec5 type DN186 = Neg3 Dec1 Dec8 Dec6 type DN187 = Neg3 Dec1 Dec8 Dec7 type DN188 = Neg3 Dec1 Dec8 Dec8 type DN189 = Neg3 Dec1 Dec8 Dec9 type DN190 = Neg3 Dec1 Dec9 Dec0 type DN191 = Neg3 Dec1 Dec9 Dec1 type DN192 = Neg3 Dec1 Dec9 Dec2 type DN193 = Neg3 Dec1 Dec9 Dec3 type DN194 = Neg3 Dec1 Dec9 Dec4 type DN195 = Neg3 Dec1 Dec9 Dec5 type DN196 = Neg3 Dec1 Dec9 Dec6 type DN197 = Neg3 Dec1 Dec9 Dec7 type DN198 = Neg3 Dec1 Dec9 Dec8 type DN199 = Neg3 Dec1 Dec9 Dec9 type DN200 = Neg3 Dec2 Dec0 Dec0 type DN201 = Neg3 Dec2 Dec0 Dec1 type DN202 = Neg3 Dec2 Dec0 Dec2 type DN203 = Neg3 Dec2 Dec0 Dec3 type DN204 = Neg3 Dec2 Dec0 Dec4 type DN205 = Neg3 Dec2 Dec0 Dec5 type DN206 = Neg3 Dec2 Dec0 Dec6 type DN207 = Neg3 Dec2 Dec0 Dec7 type DN208 = Neg3 Dec2 Dec0 Dec8 type DN209 = Neg3 Dec2 Dec0 Dec9 type DN210 = Neg3 Dec2 Dec1 Dec0 type DN211 = Neg3 Dec2 Dec1 Dec1 type DN212 = Neg3 Dec2 Dec1 Dec2 type DN213 = Neg3 Dec2 Dec1 Dec3 type DN214 = Neg3 Dec2 Dec1 Dec4 type DN215 = Neg3 Dec2 Dec1 Dec5 type DN216 = Neg3 Dec2 Dec1 Dec6 type DN217 = Neg3 Dec2 Dec1 Dec7 type DN218 = Neg3 Dec2 Dec1 Dec8 type DN219 = Neg3 Dec2 Dec1 Dec9 type DN220 = Neg3 Dec2 Dec2 Dec0 type DN221 = Neg3 Dec2 Dec2 Dec1 type DN222 = Neg3 Dec2 Dec2 Dec2 type DN223 = Neg3 Dec2 Dec2 Dec3 type DN224 = Neg3 Dec2 Dec2 Dec4 type DN225 = Neg3 Dec2 Dec2 Dec5 type DN226 = Neg3 Dec2 Dec2 Dec6 type DN227 = Neg3 Dec2 Dec2 Dec7 type DN228 = Neg3 Dec2 Dec2 Dec8 type DN229 = Neg3 Dec2 Dec2 Dec9 type DN230 = Neg3 Dec2 Dec3 Dec0 type DN231 = Neg3 Dec2 Dec3 Dec1 type DN232 = Neg3 Dec2 Dec3 Dec2 type DN233 = Neg3 Dec2 Dec3 Dec3 type DN234 = Neg3 Dec2 Dec3 Dec4 type DN235 = Neg3 Dec2 Dec3 Dec5 type DN236 = Neg3 Dec2 Dec3 Dec6 type DN237 = Neg3 Dec2 Dec3 Dec7 type DN238 = Neg3 Dec2 Dec3 Dec8 type DN239 = Neg3 Dec2 Dec3 Dec9 type DN240 = Neg3 Dec2 Dec4 Dec0 type DN241 = Neg3 Dec2 Dec4 Dec1 type DN242 = Neg3 Dec2 Dec4 Dec2 type DN243 = Neg3 Dec2 Dec4 Dec3 type DN244 = Neg3 Dec2 Dec4 Dec4 type DN245 = Neg3 Dec2 Dec4 Dec5 type DN246 = Neg3 Dec2 Dec4 Dec6 type DN247 = Neg3 Dec2 Dec4 Dec7 type DN248 = Neg3 Dec2 Dec4 Dec8 type DN249 = Neg3 Dec2 Dec4 Dec9 type DN250 = Neg3 Dec2 Dec5 Dec0 type DN251 = Neg3 Dec2 Dec5 Dec1 type DN252 = Neg3 Dec2 Dec5 Dec2 type DN253 = Neg3 Dec2 Dec5 Dec3 type DN254 = Neg3 Dec2 Dec5 Dec4 type DN255 = Neg3 Dec2 Dec5 Dec5 type DN256 = Neg3 Dec2 Dec5 Dec6 d0 :: Proxy D0 d1 :: Proxy D1 d2 :: Proxy D2 d3 :: Proxy D3 d4 :: Proxy D4 d5 :: Proxy D5 d6 :: Proxy D6 d7 :: Proxy D7 d8 :: Proxy D8 d9 :: Proxy D9 d10 :: Proxy D10 d11 :: Proxy D11 d12 :: Proxy D12 d13 :: Proxy D13 d14 :: Proxy D14 d15 :: Proxy D15 d16 :: Proxy D16 d17 :: Proxy D17 d18 :: Proxy D18 d19 :: Proxy D19 d20 :: Proxy D20 d21 :: Proxy D21 d22 :: Proxy D22 d23 :: Proxy D23 d24 :: Proxy D24 d25 :: Proxy D25 d26 :: Proxy D26 d27 :: Proxy D27 d28 :: Proxy D28 d29 :: Proxy D29 d30 :: Proxy D30 d31 :: Proxy D31 d32 :: Proxy D32 d33 :: Proxy D33 d34 :: Proxy D34 d35 :: Proxy D35 d36 :: Proxy D36 d37 :: Proxy D37 d38 :: Proxy D38 d39 :: Proxy D39 d40 :: Proxy D40 d41 :: Proxy D41 d42 :: Proxy D42 d43 :: Proxy D43 d44 :: Proxy D44 d45 :: Proxy D45 d46 :: Proxy D46 d47 :: Proxy D47 d48 :: Proxy D48 d49 :: Proxy D49 d50 :: Proxy D50 d51 :: Proxy D51 d52 :: Proxy D52 d53 :: Proxy D53 d54 :: Proxy D54 d55 :: Proxy D55 d56 :: Proxy D56 d57 :: Proxy D57 d58 :: Proxy D58 d59 :: Proxy D59 d60 :: Proxy D60 d61 :: Proxy D61 d62 :: Proxy D62 d63 :: Proxy D63 d64 :: Proxy D64 d65 :: Proxy D65 d66 :: Proxy D66 d67 :: Proxy D67 d68 :: Proxy D68 d69 :: Proxy D69 d70 :: Proxy D70 d71 :: Proxy D71 d72 :: Proxy D72 d73 :: Proxy D73 d74 :: Proxy D74 d75 :: Proxy D75 d76 :: Proxy D76 d77 :: Proxy D77 d78 :: Proxy D78 d79 :: Proxy D79 d80 :: Proxy D80 d81 :: Proxy D81 d82 :: Proxy D82 d83 :: Proxy D83 d84 :: Proxy D84 d85 :: Proxy D85 d86 :: Proxy D86 d87 :: Proxy D87 d88 :: Proxy D88 d89 :: Proxy D89 d90 :: Proxy D90 d91 :: Proxy D91 d92 :: Proxy D92 d93 :: Proxy D93 d94 :: Proxy D94 d95 :: Proxy D95 d96 :: Proxy D96 d97 :: Proxy D97 d98 :: Proxy D98 d99 :: Proxy D99 d100 :: Proxy D100 d101 :: Proxy D101 d102 :: Proxy D102 d103 :: Proxy D103 d104 :: Proxy D104 d105 :: Proxy D105 d106 :: Proxy D106 d107 :: Proxy D107 d108 :: Proxy D108 d109 :: Proxy D109 d110 :: Proxy D110 d111 :: Proxy D111 d112 :: Proxy D112 d113 :: Proxy D113 d114 :: Proxy D114 d115 :: Proxy D115 d116 :: Proxy D116 d117 :: Proxy D117 d118 :: Proxy D118 d119 :: Proxy D119 d120 :: Proxy D120 d121 :: Proxy D121 d122 :: Proxy D122 d123 :: Proxy D123 d124 :: Proxy D124 d125 :: Proxy D125 d126 :: Proxy D126 d127 :: Proxy D127 d128 :: Proxy D128 d129 :: Proxy D129 d130 :: Proxy D130 d131 :: Proxy D131 d132 :: Proxy D132 d133 :: Proxy D133 d134 :: Proxy D134 d135 :: Proxy D135 d136 :: Proxy D136 d137 :: Proxy D137 d138 :: Proxy D138 d139 :: Proxy D139 d140 :: Proxy D140 d141 :: Proxy D141 d142 :: Proxy D142 d143 :: Proxy D143 d144 :: Proxy D144 d145 :: Proxy D145 d146 :: Proxy D146 d147 :: Proxy D147 d148 :: Proxy D148 d149 :: Proxy D149 d150 :: Proxy D150 d151 :: Proxy D151 d152 :: Proxy D152 d153 :: Proxy D153 d154 :: Proxy D154 d155 :: Proxy D155 d156 :: Proxy D156 d157 :: Proxy D157 d158 :: Proxy D158 d159 :: Proxy D159 d160 :: Proxy D160 d161 :: Proxy D161 d162 :: Proxy D162 d163 :: Proxy D163 d164 :: Proxy D164 d165 :: Proxy D165 d166 :: Proxy D166 d167 :: Proxy D167 d168 :: Proxy D168 d169 :: Proxy D169 d170 :: Proxy D170 d171 :: Proxy D171 d172 :: Proxy D172 d173 :: Proxy D173 d174 :: Proxy D174 d175 :: Proxy D175 d176 :: Proxy D176 d177 :: Proxy D177 d178 :: Proxy D178 d179 :: Proxy D179 d180 :: Proxy D180 d181 :: Proxy D181 d182 :: Proxy D182 d183 :: Proxy D183 d184 :: Proxy D184 d185 :: Proxy D185 d186 :: Proxy D186 d187 :: Proxy D187 d188 :: Proxy D188 d189 :: Proxy D189 d190 :: Proxy D190 d191 :: Proxy D191 d192 :: Proxy D192 d193 :: Proxy D193 d194 :: Proxy D194 d195 :: Proxy D195 d196 :: Proxy D196 d197 :: Proxy D197 d198 :: Proxy D198 d199 :: Proxy D199 d200 :: Proxy D200 d201 :: Proxy D201 d202 :: Proxy D202 d203 :: Proxy D203 d204 :: Proxy D204 d205 :: Proxy D205 d206 :: Proxy D206 d207 :: Proxy D207 d208 :: Proxy D208 d209 :: Proxy D209 d210 :: Proxy D210 d211 :: Proxy D211 d212 :: Proxy D212 d213 :: Proxy D213 d214 :: Proxy D214 d215 :: Proxy D215 d216 :: Proxy D216 d217 :: Proxy D217 d218 :: Proxy D218 d219 :: Proxy D219 d220 :: Proxy D220 d221 :: Proxy D221 d222 :: Proxy D222 d223 :: Proxy D223 d224 :: Proxy D224 d225 :: Proxy D225 d226 :: Proxy D226 d227 :: Proxy D227 d228 :: Proxy D228 d229 :: Proxy D229 d230 :: Proxy D230 d231 :: Proxy D231 d232 :: Proxy D232 d233 :: Proxy D233 d234 :: Proxy D234 d235 :: Proxy D235 d236 :: Proxy D236 d237 :: Proxy D237 d238 :: Proxy D238 d239 :: Proxy D239 d240 :: Proxy D240 d241 :: Proxy D241 d242 :: Proxy D242 d243 :: Proxy D243 d244 :: Proxy D244 d245 :: Proxy D245 d246 :: Proxy D246 d247 :: Proxy D247 d248 :: Proxy D248 d249 :: Proxy D249 d250 :: Proxy D250 d251 :: Proxy D251 d252 :: Proxy D252 d253 :: Proxy D253 d254 :: Proxy D254 d255 :: Proxy D255 d256 :: Proxy D256 dn1 :: Proxy DN1 dn2 :: Proxy DN2 dn3 :: Proxy DN3 dn4 :: Proxy DN4 dn5 :: Proxy DN5 dn6 :: Proxy DN6 dn7 :: Proxy DN7 dn8 :: Proxy DN8 dn9 :: Proxy DN9 dn10 :: Proxy DN10 dn11 :: Proxy DN11 dn12 :: Proxy DN12 dn13 :: Proxy DN13 dn14 :: Proxy DN14 dn15 :: Proxy DN15 dn16 :: Proxy DN16 dn17 :: Proxy DN17 dn18 :: Proxy DN18 dn19 :: Proxy DN19 dn20 :: Proxy DN20 dn21 :: Proxy DN21 dn22 :: Proxy DN22 dn23 :: Proxy DN23 dn24 :: Proxy DN24 dn25 :: Proxy DN25 dn26 :: Proxy DN26 dn27 :: Proxy DN27 dn28 :: Proxy DN28 dn29 :: Proxy DN29 dn30 :: Proxy DN30 dn31 :: Proxy DN31 dn32 :: Proxy DN32 dn33 :: Proxy DN33 dn34 :: Proxy DN34 dn35 :: Proxy DN35 dn36 :: Proxy DN36 dn37 :: Proxy DN37 dn38 :: Proxy DN38 dn39 :: Proxy DN39 dn40 :: Proxy DN40 dn41 :: Proxy DN41 dn42 :: Proxy DN42 dn43 :: Proxy DN43 dn44 :: Proxy DN44 dn45 :: Proxy DN45 dn46 :: Proxy DN46 dn47 :: Proxy DN47 dn48 :: Proxy DN48 dn49 :: Proxy DN49 dn50 :: Proxy DN50 dn51 :: Proxy DN51 dn52 :: Proxy DN52 dn53 :: Proxy DN53 dn54 :: Proxy DN54 dn55 :: Proxy DN55 dn56 :: Proxy DN56 dn57 :: Proxy DN57 dn58 :: Proxy DN58 dn59 :: Proxy DN59 dn60 :: Proxy DN60 dn61 :: Proxy DN61 dn62 :: Proxy DN62 dn63 :: Proxy DN63 dn64 :: Proxy DN64 dn65 :: Proxy DN65 dn66 :: Proxy DN66 dn67 :: Proxy DN67 dn68 :: Proxy DN68 dn69 :: Proxy DN69 dn70 :: Proxy DN70 dn71 :: Proxy DN71 dn72 :: Proxy DN72 dn73 :: Proxy DN73 dn74 :: Proxy DN74 dn75 :: Proxy DN75 dn76 :: Proxy DN76 dn77 :: Proxy DN77 dn78 :: Proxy DN78 dn79 :: Proxy DN79 dn80 :: Proxy DN80 dn81 :: Proxy DN81 dn82 :: Proxy DN82 dn83 :: Proxy DN83 dn84 :: Proxy DN84 dn85 :: Proxy DN85 dn86 :: Proxy DN86 dn87 :: Proxy DN87 dn88 :: Proxy DN88 dn89 :: Proxy DN89 dn90 :: Proxy DN90 dn91 :: Proxy DN91 dn92 :: Proxy DN92 dn93 :: Proxy DN93 dn94 :: Proxy DN94 dn95 :: Proxy DN95 dn96 :: Proxy DN96 dn97 :: Proxy DN97 dn98 :: Proxy DN98 dn99 :: Proxy DN99 dn100 :: Proxy DN100 dn101 :: Proxy DN101 dn102 :: Proxy DN102 dn103 :: Proxy DN103 dn104 :: Proxy DN104 dn105 :: Proxy DN105 dn106 :: Proxy DN106 dn107 :: Proxy DN107 dn108 :: Proxy DN108 dn109 :: Proxy DN109 dn110 :: Proxy DN110 dn111 :: Proxy DN111 dn112 :: Proxy DN112 dn113 :: Proxy DN113 dn114 :: Proxy DN114 dn115 :: Proxy DN115 dn116 :: Proxy DN116 dn117 :: Proxy DN117 dn118 :: Proxy DN118 dn119 :: Proxy DN119 dn120 :: Proxy DN120 dn121 :: Proxy DN121 dn122 :: Proxy DN122 dn123 :: Proxy DN123 dn124 :: Proxy DN124 dn125 :: Proxy DN125 dn126 :: Proxy DN126 dn127 :: Proxy DN127 dn128 :: Proxy DN128 dn129 :: Proxy DN129 dn130 :: Proxy DN130 dn131 :: Proxy DN131 dn132 :: Proxy DN132 dn133 :: Proxy DN133 dn134 :: Proxy DN134 dn135 :: Proxy DN135 dn136 :: Proxy DN136 dn137 :: Proxy DN137 dn138 :: Proxy DN138 dn139 :: Proxy DN139 dn140 :: Proxy DN140 dn141 :: Proxy DN141 dn142 :: Proxy DN142 dn143 :: Proxy DN143 dn144 :: Proxy DN144 dn145 :: Proxy DN145 dn146 :: Proxy DN146 dn147 :: Proxy DN147 dn148 :: Proxy DN148 dn149 :: Proxy DN149 dn150 :: Proxy DN150 dn151 :: Proxy DN151 dn152 :: Proxy DN152 dn153 :: Proxy DN153 dn154 :: Proxy DN154 dn155 :: Proxy DN155 dn156 :: Proxy DN156 dn157 :: Proxy DN157 dn158 :: Proxy DN158 dn159 :: Proxy DN159 dn160 :: Proxy DN160 dn161 :: Proxy DN161 dn162 :: Proxy DN162 dn163 :: Proxy DN163 dn164 :: Proxy DN164 dn165 :: Proxy DN165 dn166 :: Proxy DN166 dn167 :: Proxy DN167 dn168 :: Proxy DN168 dn169 :: Proxy DN169 dn170 :: Proxy DN170 dn171 :: Proxy DN171 dn172 :: Proxy DN172 dn173 :: Proxy DN173 dn174 :: Proxy DN174 dn175 :: Proxy DN175 dn176 :: Proxy DN176 dn177 :: Proxy DN177 dn178 :: Proxy DN178 dn179 :: Proxy DN179 dn180 :: Proxy DN180 dn181 :: Proxy DN181 dn182 :: Proxy DN182 dn183 :: Proxy DN183 dn184 :: Proxy DN184 dn185 :: Proxy DN185 dn186 :: Proxy DN186 dn187 :: Proxy DN187 dn188 :: Proxy DN188 dn189 :: Proxy DN189 dn190 :: Proxy DN190 dn191 :: Proxy DN191 dn192 :: Proxy DN192 dn193 :: Proxy DN193 dn194 :: Proxy DN194 dn195 :: Proxy DN195 dn196 :: Proxy DN196 dn197 :: Proxy DN197 dn198 :: Proxy DN198 dn199 :: Proxy DN199 dn200 :: Proxy DN200 dn201 :: Proxy DN201 dn202 :: Proxy DN202 dn203 :: Proxy DN203 dn204 :: Proxy DN204 dn205 :: Proxy DN205 dn206 :: Proxy DN206 dn207 :: Proxy DN207 dn208 :: Proxy DN208 dn209 :: Proxy DN209 dn210 :: Proxy DN210 dn211 :: Proxy DN211 dn212 :: Proxy DN212 dn213 :: Proxy DN213 dn214 :: Proxy DN214 dn215 :: Proxy DN215 dn216 :: Proxy DN216 dn217 :: Proxy DN217 dn218 :: Proxy DN218 dn219 :: Proxy DN219 dn220 :: Proxy DN220 dn221 :: Proxy DN221 dn222 :: Proxy DN222 dn223 :: Proxy DN223 dn224 :: Proxy DN224 dn225 :: Proxy DN225 dn226 :: Proxy DN226 dn227 :: Proxy DN227 dn228 :: Proxy DN228 dn229 :: Proxy DN229 dn230 :: Proxy DN230 dn231 :: Proxy DN231 dn232 :: Proxy DN232 dn233 :: Proxy DN233 dn234 :: Proxy DN234 dn235 :: Proxy DN235 dn236 :: Proxy DN236 dn237 :: Proxy DN237 dn238 :: Proxy DN238 dn239 :: Proxy DN239 dn240 :: Proxy DN240 dn241 :: Proxy DN241 dn242 :: Proxy DN242 dn243 :: Proxy DN243 dn244 :: Proxy DN244 dn245 :: Proxy DN245 dn246 :: Proxy DN246 dn247 :: Proxy DN247 dn248 :: Proxy DN248 dn249 :: Proxy DN249 dn250 :: Proxy DN250 dn251 :: Proxy DN251 dn252 :: Proxy DN252 dn253 :: Proxy DN253 dn254 :: Proxy DN254 dn255 :: Proxy DN255 dn256 :: Proxy DN256 module Type.Data.Num.Decimal module Type.Data.Num.Decimal.Proof data Digits xs Digits :: Digits xs data UnaryNat n UnaryNat :: UnaryNat n unaryNat :: Natural n => UnaryNat n data UnaryPos n UnaryPos :: UnaryPos n unaryPos :: Positive n => UnaryPos n module Data.SizedInt data SizedInt nT instance Natural nT => Bits (SizedInt nT) instance Natural nT => Integral (SizedInt nT) instance Natural nT => Real (SizedInt nT) instance Natural nT => Num (SizedInt nT) instance Natural nT => Enum (SizedInt nT) instance Natural nT => Bounded (SizedInt nT) instance Natural nT => Ord (SizedInt nT) instance Natural nT => Read (SizedInt nT) instance Natural nT => Show (SizedInt nT) instance Natural nT => Eq (SizedInt nT)