-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Type-level integers, booleans, lists using type families
--
@package tfp
@version 1.0
module Type.Base.Proxy
data Proxy a
Proxy :: Proxy a
instance Applicative Proxy
instance Functor Proxy
module Type.Data.Bool
data True
true :: Proxy True
data False
false :: Proxy False
not :: Proxy x -> Proxy (Not x)
and :: Proxy x -> Proxy y -> Proxy (x :&&: y)
or :: Proxy x -> Proxy y -> Proxy (x :||: y)
if_ :: Proxy x -> Proxy y -> Proxy z -> Proxy (If x y z)
instance Typeable True
instance Typeable False
instance Show False
instance Show True
module Type.Data.List
data Cons car cdr
data Null
instance Typeable Cons
instance Typeable Null
instance Show Null
instance (Show car, Show cdr) => Show (Cons car cdr)
module Type.Data.Ord
compare :: Proxy x -> Proxy y -> Proxy (Compare x y)
data LT
data EQ
data GT
isLT :: Proxy c -> Proxy (IsLT c)
isEQ :: Proxy c -> Proxy (IsEQ c)
isGT :: Proxy c -> Proxy (IsGT c)
class (:<:) x y
lt :: Proxy x -> Proxy y -> Proxy (LTT x y)
class (:<=:) x y
le :: Proxy x -> Proxy y -> Proxy (LET x y)
class (:==:) x y
eq :: Proxy x -> Proxy y -> Proxy (EQT x y)
class (:/=:) x y
ne :: Proxy x -> Proxy y -> Proxy (NET x y)
class (:>=:) x y
ge :: Proxy x -> Proxy y -> Proxy (GET x y)
class (:>:) x y
gt :: Proxy x -> Proxy y -> Proxy (GTT x y)
min :: Proxy x -> Proxy y -> Proxy (Min x y)
max :: Proxy x -> Proxy y -> Proxy (Max x y)
module Type.Data.Num
-- | Negate x evaluates to the additive inverse of (i.e., minus)
-- x.
negate :: Proxy x -> Proxy (Negate x)
isPositive :: Proxy x -> Proxy (IsPositive x)
isZero :: Proxy x -> Proxy (IsZero x)
isNegative :: Proxy x -> Proxy (IsNegative x)
isNatural :: Proxy x -> Proxy (IsNatural x)
one :: Proxy repr -> Proxy (One repr)
succ :: Proxy x -> Proxy (Succ x)
pred :: Proxy x -> Proxy (Pred x)
isEven :: Proxy x -> Proxy (IsEven x)
isOdd :: Proxy x -> Proxy (IsOdd x)
add :: Proxy x -> Proxy y -> Proxy (x :+: y)
sub :: Proxy x -> Proxy y -> Proxy (x :-: y)
mul :: Proxy x -> Proxy y -> Proxy (x :*: y)
mul2 :: Proxy x -> Proxy (Mul2 x)
pow2 :: Proxy x -> Proxy (Pow2 x)
log2Ceil :: Proxy x -> Proxy (Log2Ceil x)
divMod :: Proxy x -> Proxy y -> Proxy (DivMod x y)
div :: Proxy x -> Proxy y -> Proxy (Div x y)
mod :: Proxy x -> Proxy y -> Proxy (Mod x y)
div2 :: Proxy x -> Proxy (Div2 x)
fac :: Proxy x -> Proxy (Fac x)
newtype Singleton d
Singleton :: Integer -> Singleton d
class Representation r
reifyIntegral :: Representation r => Proxy r -> Integer -> (forall s. (Integer s, Repr s ~ r) => Proxy s -> a) -> a
class Representation (Repr x) => Integer x where type family Repr x
singleton :: Integer x => Singleton x
class Integer x => Natural x
class Integer x => Positive x
class Integer x => Negative x
fromInteger :: (Integer x, Num y) => Proxy x -> y
reifyPositive :: Representation r => Proxy r -> Integer -> (forall s. (Positive s, Repr s ~ r) => Proxy s -> a) -> Maybe a
reifyNegative :: Representation r => Proxy r -> Integer -> (forall s. (Negative s, Repr s ~ r) => Proxy s -> a) -> Maybe a
reifyNatural :: Representation r => Proxy r -> Integer -> (forall s. (Natural s, Repr s ~ r) => Proxy s -> a) -> Maybe a
instance Integer x => Integer (AssertNat x)
instance Integer x => Integer (AssertNeg x)
instance Integer x => Integer (AssertPos x)
instance (Integer x, IsNegative x ~ True) => Negative x
instance (Integer x, IsPositive x ~ True) => Positive x
instance (Integer x, IsNatural x ~ True) => Natural x
module Data.SizedWord
data SizedWord nT
instance Natural nT => Bits (SizedWord nT)
instance Natural nT => Integral (SizedWord nT)
instance Natural nT => Real (SizedWord nT)
instance Natural nT => Num (SizedWord nT)
instance Natural nT => Enum (SizedWord nT)
instance Natural nT => Bounded (SizedWord nT)
instance Natural nT => Ord (SizedWord nT)
instance Natural nT => Read (SizedWord nT)
instance Natural nT => Show (SizedWord nT)
instance Natural nT => Eq (SizedWord nT)
module Type.Data.Num.Unary
-- | Representation name for unary type level numbers.
data Unary
data Un x
data Zero
data Succ x
zero :: Proxy Zero
succ :: Proxy n -> Proxy (Succ n)
newtype Singleton n
Singleton :: Integer -> Singleton n
singleton :: Natural n => Singleton n
singletonFromProxy :: Natural n => Proxy n -> Singleton n
integerFromSingleton :: Natural n => Singleton n -> Integer
integralFromSingleton :: (Natural n, Num a) => Singleton n -> a
class Natural n
switchNat :: Natural n => f Zero -> (forall m. Natural m => f (Succ m)) -> f n
class Natural n => Positive n
switchPos :: Positive n => (forall m. Natural m => f (Succ m)) -> f n
instance Representation Unary
instance Natural n => Integer (Un n)
instance Natural n => Positive (Succ n)
instance Natural n => Natural (Succ n)
instance Natural Zero
module Type.Data.Num.Unary.Literal
type U0 = Zero
type U1 = Succ U0
type U2 = Succ U1
type U3 = Succ U2
type U4 = Succ U3
type U5 = Succ U4
type U6 = Succ U5
type U7 = Succ U6
type U8 = Succ U7
type U9 = Succ U8
type U10 = Succ U9
type U11 = Succ U10
type U12 = Succ U11
type U13 = Succ U12
type U14 = Succ U13
type U15 = Succ U14
type U16 = Succ U15
type U17 = Succ U16
type U18 = Succ U17
type U19 = Succ U18
type U20 = Succ U19
type U21 = Succ U20
type U22 = Succ U21
type U23 = Succ U22
type U24 = Succ U23
type U25 = Succ U24
type U26 = Succ U25
type U27 = Succ U26
type U28 = Succ U27
type U29 = Succ U28
type U30 = Succ U29
type U31 = Succ U30
type U32 = Succ U31
type U33 = Succ U32
type U34 = Succ U33
type U35 = Succ U34
type U36 = Succ U35
type U37 = Succ U36
type U38 = Succ U37
type U39 = Succ U38
type U40 = Succ U39
type U41 = Succ U40
type U42 = Succ U41
type U43 = Succ U42
type U44 = Succ U43
type U45 = Succ U44
type U46 = Succ U45
type U47 = Succ U46
type U48 = Succ U47
type U49 = Succ U48
type U50 = Succ U49
type U51 = Succ U50
type U52 = Succ U51
type U53 = Succ U52
type U54 = Succ U53
type U55 = Succ U54
type U56 = Succ U55
type U57 = Succ U56
type U58 = Succ U57
type U59 = Succ U58
type U60 = Succ U59
type U61 = Succ U60
type U62 = Succ U61
type U63 = Succ U62
type U64 = Succ U63
u0 :: Proxy U0
u1 :: Proxy U1
u2 :: Proxy U2
u3 :: Proxy U3
u4 :: Proxy U4
u5 :: Proxy U5
u6 :: Proxy U6
u7 :: Proxy U7
u8 :: Proxy U8
u9 :: Proxy U9
u10 :: Proxy U10
u11 :: Proxy U11
u12 :: Proxy U12
u13 :: Proxy U13
u14 :: Proxy U14
u15 :: Proxy U15
u16 :: Proxy U16
u17 :: Proxy U17
u18 :: Proxy U18
u19 :: Proxy U19
u20 :: Proxy U20
u21 :: Proxy U21
u22 :: Proxy U22
u23 :: Proxy U23
u24 :: Proxy U24
u25 :: Proxy U25
u26 :: Proxy U26
u27 :: Proxy U27
u28 :: Proxy U28
u29 :: Proxy U29
u30 :: Proxy U30
u31 :: Proxy U31
u32 :: Proxy U32
u33 :: Proxy U33
u34 :: Proxy U34
u35 :: Proxy U35
u36 :: Proxy U36
u37 :: Proxy U37
u38 :: Proxy U38
u39 :: Proxy U39
u40 :: Proxy U40
u41 :: Proxy U41
u42 :: Proxy U42
u43 :: Proxy U43
u44 :: Proxy U44
u45 :: Proxy U45
u46 :: Proxy U46
u47 :: Proxy U47
u48 :: Proxy U48
u49 :: Proxy U49
u50 :: Proxy U50
u51 :: Proxy U51
u52 :: Proxy U52
u53 :: Proxy U53
u54 :: Proxy U54
u55 :: Proxy U55
u56 :: Proxy U56
u57 :: Proxy U57
u58 :: Proxy U58
u59 :: Proxy U59
u60 :: Proxy U60
u61 :: Proxy U61
u62 :: Proxy U62
u63 :: Proxy U63
u64 :: Proxy U64
module Type.Data.Num.Decimal.Digit
newtype Singleton d
Singleton :: Int -> Singleton d
singleton :: C d => Singleton d
class C d
switch :: C d => f Dec0 -> f Dec1 -> f Dec2 -> f Dec3 -> f Dec4 -> f Dec5 -> f Dec6 -> f Dec7 -> f Dec8 -> f Dec9 -> f d
class C d => Pos d
switchPos :: (Pos d, Pos d) => f Dec1 -> f Dec2 -> f Dec3 -> f Dec4 -> f Dec5 -> f Dec6 -> f Dec7 -> f Dec8 -> f Dec9 -> f d
data Dec0
data Dec1
data Dec2
data Dec3
data Dec4
data Dec5
data Dec6
data Dec7
data Dec8
data Dec9
reify :: Integer -> (forall d. C d => Proxy d -> w) -> w
reifyPos :: Integer -> (forall d. Pos d => Proxy d -> w) -> w
instance Typeable Dec0
instance Typeable Dec1
instance Typeable Dec2
instance Typeable Dec3
instance Typeable Dec4
instance Typeable Dec5
instance Typeable Dec6
instance Typeable Dec7
instance Typeable Dec8
instance Typeable Dec9
instance Show Dec9
instance C Dec9
instance Pos Dec9
instance Show Dec8
instance C Dec8
instance Pos Dec8
instance Show Dec7
instance C Dec7
instance Pos Dec7
instance Show Dec6
instance C Dec6
instance Pos Dec6
instance Show Dec5
instance C Dec5
instance Pos Dec5
instance Show Dec4
instance C Dec4
instance Pos Dec4
instance Show Dec3
instance C Dec3
instance Pos Dec3
instance Show Dec2
instance C Dec2
instance Pos Dec2
instance Show Dec1
instance C Dec1
instance Pos Dec1
instance Show Dec0
instance C Dec0
module Type.Data.Num.Unary.Proof
data Nat x
Nat :: Nat x
data Pos x
Pos :: Pos x
natFromPos :: Pos x -> Nat x
addNat :: Nat x -> Nat y -> Nat (x :+: y)
addPosL :: Pos x -> Nat y -> Pos (x :+: y)
addPosR :: Nat x -> Pos y -> Pos (x :+: y)
mulNat :: Nat x -> Nat y -> Nat (x :*: y)
mulPos :: Pos x -> Pos y -> Pos (x :*: y)
module Type.Data.Num.Decimal.Digit.Proof
data Nat d
Nat :: Nat d
data Pos d
Pos :: Pos d
data UnaryNat d
UnaryNat :: UnaryNat d
unaryNat :: C d => UnaryNat d
unaryNatImpl :: Nat d -> Nat (ToUnary d)
data UnaryPos d
UnaryPos :: UnaryPos d
unaryPos :: Pos d => UnaryPos d
unaryPosImpl :: Pos d -> Pos (ToUnary d)
module Type.Data.Num.Decimal.Number
-- | Representation name for decimal type level numbers.
data Decimal
decimal :: Proxy n -> Proxy (Dec n)
-- | The wrapper type for decimal type level numbers.
data Dec x
data Zero
data Pos x xs
data Neg x xs
-- | The terminator type for ascending decimal digit lists.
data EndAsc
data (:<) ds d
-- | The terminator type for descending decimal digit lists.
data EndDesc
data (:>) d ds
newtype Singleton x
Singleton :: Integer -> Singleton x
singleton :: Integer x => Singleton x
singletonFromProxy :: Integer n => Proxy n -> Singleton n
integerFromSingleton :: Integer n => Singleton n -> Integer
integralFromSingleton :: (Integer n, Num a) => Singleton n -> a
integralFromProxy :: (Integer n, Num a) => Proxy n -> a
class Integer n
switch :: Integer n => f Zero -> (forall x xs. (Pos x, Digits xs) => f (Neg x xs)) -> (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n
class Integer n => Natural n
switchNat :: Natural n => f Zero -> (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n
class Natural n => Positive n
switchPos :: Positive n => (forall x xs. (Pos x, Digits xs) => f (Pos x xs)) -> f n
class Integer n => Negative n
switchNeg :: Negative n => (forall x xs. (Pos x, Digits xs) => f (Neg x xs)) -> f n
reifyIntegral :: Integer -> (forall s. Integer s => Proxy s -> w) -> w
reifyNatural :: Integer -> (forall s. Natural s => Proxy s -> a) -> Maybe a
reifyPositive :: Integer -> (forall s. Positive s => Proxy s -> a) -> Maybe a
reifyNegative :: Integer -> (forall s. Negative s => Proxy s -> a) -> Maybe a
reifyPos :: Integer -> (forall x xs. (Pos x, Digits xs) => Proxy (Pos x xs) -> a) -> Maybe a
reifyNeg :: Integer -> (forall x xs. (Pos x, Digits xs) => Proxy (Neg x xs) -> a) -> Maybe a
class Digits xs
switchDigits :: Digits xs => f EndDesc -> (forall xh xl. (C xh, Digits xl) => f (xh :> xl)) -> f xs
type (:-:) x y = x :+: Negate y
class (:<:) x y
class (:<=:) x y
class (:==:) x y
class (:>:) x y
class (:>=:) x y
class (:/=:) x y
type UnaryAcc m x = ToUnary x :+: (m :*: U10)
instance IsEQ (ComparePos x xs y ys) ~ False => Pos x xs :/=: Pos y ys
instance IsEQ (ComparePos x xs y ys) ~ False => Neg x xs :/=: Neg y ys
instance Zero :/=: Pos y ys
instance Neg x xs :/=: Pos y ys
instance Pos x xs :/=: Zero
instance Neg x xs :/=: Zero
instance Pos x xs :/=: Neg y ys
instance Zero :/=: Neg y ys
instance ComparePos x xs y ys ~ EQ => Pos x xs :==: Pos y ys
instance ComparePos x xs y ys ~ EQ => Neg x xs :==: Neg y ys
instance Zero :==: Zero
instance GreaterPos y ys x xs ~ False => Pos x xs :>=: Pos y ys
instance GreaterPos x xs y ys ~ False => Neg x xs :>=: Neg y ys
instance Pos x xs :>=: Zero
instance Zero :>=: Zero
instance Pos x xs :>=: Neg y ys
instance Zero :>=: Neg y ys
instance ComparePos x xs y ys ~ GT => Pos x xs :>: Pos y ys
instance ComparePos x xs y ys ~ LT => Neg x xs :>: Neg y ys
instance Pos x xs :>: Zero
instance Pos x xs :>: Neg y ys
instance Zero :>: Neg y ys
instance GreaterPos x xs y ys ~ False => Pos x xs :<=: Pos y ys
instance GreaterPos y ys x xs ~ False => Neg x xs :<=: Neg y ys
instance Zero :<=: Pos y ys
instance Zero :<=: Zero
instance Neg x xs :<=: Pos y ys
instance Neg x xs :<=: Zero
instance ComparePos x xs y ys ~ LT => Pos x xs :<: Pos y ys
instance ComparePos x xs y ys ~ GT => Neg x xs :<: Neg y ys
instance Zero :<: Pos y ys
instance Neg x xs :<: Pos y ys
instance Neg x xs :<: Zero
instance x :/=: y => Dec x :/=: Dec y
instance x :==: y => Dec x :==: Dec y
instance x :>: y => Dec x :>: Dec y
instance x :>=: y => Dec x :>=: Dec y
instance x :<=: y => Dec x :<=: Dec y
instance x :<: y => Dec x :<: Dec y
instance (C xh, Digits xl) => Digits (xh :> xl)
instance Digits EndDesc
instance (Pos x, Digits xs) => Negative (Neg x xs)
instance (Pos x, Digits xs) => Positive (Pos x xs)
instance (Pos x, Digits xs) => Natural (Pos x xs)
instance Natural Zero
instance (Pos x, Digits xs) => Integer (Pos x xs)
instance (Pos x, Digits xs) => Integer (Neg x xs)
instance Integer Zero
instance Integer x => Integer (Dec x)
instance Representation Decimal
instance Show EndDesc
instance Show EndAsc
module Type.Data.Num.Decimal.Literal
type Pos1 p0 = Pos p0 (EndDesc)
type Pos2 p1 p0 = Pos p1 (p0 :> EndDesc)
type Pos3 p2 p1 p0 = Pos p2 (p1 :> (p0 :> EndDesc))
type Pos4 p3 p2 p1 p0 = Pos p3 (p2 :> (p1 :> (p0 :> EndDesc)))
type Pos5 p4 p3 p2 p1 p0 = Pos p4 (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))
type Pos6 p5 p4 p3 p2 p1 p0 = Pos p5 (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))))
type Pos7 p6 p5 p4 p3 p2 p1 p0 = Pos p6 (p5 :> (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))))
type Neg1 p0 = Neg p0 (EndDesc)
type Neg2 p1 p0 = Neg p1 (p0 :> EndDesc)
type Neg3 p2 p1 p0 = Neg p2 (p1 :> (p0 :> EndDesc))
type Neg4 p3 p2 p1 p0 = Neg p3 (p2 :> (p1 :> (p0 :> EndDesc)))
type Neg5 p4 p3 p2 p1 p0 = Neg p4 (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))
type Neg6 p5 p4 p3 p2 p1 p0 = Neg p5 (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc)))))
type Neg7 p6 p5 p4 p3 p2 p1 p0 = Neg p6 (p5 :> (p4 :> (p3 :> (p2 :> (p1 :> (p0 :> EndDesc))))))
type D0 = Zero
type D1 = Pos1 Dec1
type D2 = Pos1 Dec2
type D3 = Pos1 Dec3
type D4 = Pos1 Dec4
type D5 = Pos1 Dec5
type D6 = Pos1 Dec6
type D7 = Pos1 Dec7
type D8 = Pos1 Dec8
type D9 = Pos1 Dec9
type D10 = Pos2 Dec1 Dec0
type D11 = Pos2 Dec1 Dec1
type D12 = Pos2 Dec1 Dec2
type D13 = Pos2 Dec1 Dec3
type D14 = Pos2 Dec1 Dec4
type D15 = Pos2 Dec1 Dec5
type D16 = Pos2 Dec1 Dec6
type D17 = Pos2 Dec1 Dec7
type D18 = Pos2 Dec1 Dec8
type D19 = Pos2 Dec1 Dec9
type D20 = Pos2 Dec2 Dec0
type D21 = Pos2 Dec2 Dec1
type D22 = Pos2 Dec2 Dec2
type D23 = Pos2 Dec2 Dec3
type D24 = Pos2 Dec2 Dec4
type D25 = Pos2 Dec2 Dec5
type D26 = Pos2 Dec2 Dec6
type D27 = Pos2 Dec2 Dec7
type D28 = Pos2 Dec2 Dec8
type D29 = Pos2 Dec2 Dec9
type D30 = Pos2 Dec3 Dec0
type D31 = Pos2 Dec3 Dec1
type D32 = Pos2 Dec3 Dec2
type D33 = Pos2 Dec3 Dec3
type D34 = Pos2 Dec3 Dec4
type D35 = Pos2 Dec3 Dec5
type D36 = Pos2 Dec3 Dec6
type D37 = Pos2 Dec3 Dec7
type D38 = Pos2 Dec3 Dec8
type D39 = Pos2 Dec3 Dec9
type D40 = Pos2 Dec4 Dec0
type D41 = Pos2 Dec4 Dec1
type D42 = Pos2 Dec4 Dec2
type D43 = Pos2 Dec4 Dec3
type D44 = Pos2 Dec4 Dec4
type D45 = Pos2 Dec4 Dec5
type D46 = Pos2 Dec4 Dec6
type D47 = Pos2 Dec4 Dec7
type D48 = Pos2 Dec4 Dec8
type D49 = Pos2 Dec4 Dec9
type D50 = Pos2 Dec5 Dec0
type D51 = Pos2 Dec5 Dec1
type D52 = Pos2 Dec5 Dec2
type D53 = Pos2 Dec5 Dec3
type D54 = Pos2 Dec5 Dec4
type D55 = Pos2 Dec5 Dec5
type D56 = Pos2 Dec5 Dec6
type D57 = Pos2 Dec5 Dec7
type D58 = Pos2 Dec5 Dec8
type D59 = Pos2 Dec5 Dec9
type D60 = Pos2 Dec6 Dec0
type D61 = Pos2 Dec6 Dec1
type D62 = Pos2 Dec6 Dec2
type D63 = Pos2 Dec6 Dec3
type D64 = Pos2 Dec6 Dec4
type D65 = Pos2 Dec6 Dec5
type D66 = Pos2 Dec6 Dec6
type D67 = Pos2 Dec6 Dec7
type D68 = Pos2 Dec6 Dec8
type D69 = Pos2 Dec6 Dec9
type D70 = Pos2 Dec7 Dec0
type D71 = Pos2 Dec7 Dec1
type D72 = Pos2 Dec7 Dec2
type D73 = Pos2 Dec7 Dec3
type D74 = Pos2 Dec7 Dec4
type D75 = Pos2 Dec7 Dec5
type D76 = Pos2 Dec7 Dec6
type D77 = Pos2 Dec7 Dec7
type D78 = Pos2 Dec7 Dec8
type D79 = Pos2 Dec7 Dec9
type D80 = Pos2 Dec8 Dec0
type D81 = Pos2 Dec8 Dec1
type D82 = Pos2 Dec8 Dec2
type D83 = Pos2 Dec8 Dec3
type D84 = Pos2 Dec8 Dec4
type D85 = Pos2 Dec8 Dec5
type D86 = Pos2 Dec8 Dec6
type D87 = Pos2 Dec8 Dec7
type D88 = Pos2 Dec8 Dec8
type D89 = Pos2 Dec8 Dec9
type D90 = Pos2 Dec9 Dec0
type D91 = Pos2 Dec9 Dec1
type D92 = Pos2 Dec9 Dec2
type D93 = Pos2 Dec9 Dec3
type D94 = Pos2 Dec9 Dec4
type D95 = Pos2 Dec9 Dec5
type D96 = Pos2 Dec9 Dec6
type D97 = Pos2 Dec9 Dec7
type D98 = Pos2 Dec9 Dec8
type D99 = Pos2 Dec9 Dec9
type D100 = Pos3 Dec1 Dec0 Dec0
type D101 = Pos3 Dec1 Dec0 Dec1
type D102 = Pos3 Dec1 Dec0 Dec2
type D103 = Pos3 Dec1 Dec0 Dec3
type D104 = Pos3 Dec1 Dec0 Dec4
type D105 = Pos3 Dec1 Dec0 Dec5
type D106 = Pos3 Dec1 Dec0 Dec6
type D107 = Pos3 Dec1 Dec0 Dec7
type D108 = Pos3 Dec1 Dec0 Dec8
type D109 = Pos3 Dec1 Dec0 Dec9
type D110 = Pos3 Dec1 Dec1 Dec0
type D111 = Pos3 Dec1 Dec1 Dec1
type D112 = Pos3 Dec1 Dec1 Dec2
type D113 = Pos3 Dec1 Dec1 Dec3
type D114 = Pos3 Dec1 Dec1 Dec4
type D115 = Pos3 Dec1 Dec1 Dec5
type D116 = Pos3 Dec1 Dec1 Dec6
type D117 = Pos3 Dec1 Dec1 Dec7
type D118 = Pos3 Dec1 Dec1 Dec8
type D119 = Pos3 Dec1 Dec1 Dec9
type D120 = Pos3 Dec1 Dec2 Dec0
type D121 = Pos3 Dec1 Dec2 Dec1
type D122 = Pos3 Dec1 Dec2 Dec2
type D123 = Pos3 Dec1 Dec2 Dec3
type D124 = Pos3 Dec1 Dec2 Dec4
type D125 = Pos3 Dec1 Dec2 Dec5
type D126 = Pos3 Dec1 Dec2 Dec6
type D127 = Pos3 Dec1 Dec2 Dec7
type D128 = Pos3 Dec1 Dec2 Dec8
type D129 = Pos3 Dec1 Dec2 Dec9
type D130 = Pos3 Dec1 Dec3 Dec0
type D131 = Pos3 Dec1 Dec3 Dec1
type D132 = Pos3 Dec1 Dec3 Dec2
type D133 = Pos3 Dec1 Dec3 Dec3
type D134 = Pos3 Dec1 Dec3 Dec4
type D135 = Pos3 Dec1 Dec3 Dec5
type D136 = Pos3 Dec1 Dec3 Dec6
type D137 = Pos3 Dec1 Dec3 Dec7
type D138 = Pos3 Dec1 Dec3 Dec8
type D139 = Pos3 Dec1 Dec3 Dec9
type D140 = Pos3 Dec1 Dec4 Dec0
type D141 = Pos3 Dec1 Dec4 Dec1
type D142 = Pos3 Dec1 Dec4 Dec2
type D143 = Pos3 Dec1 Dec4 Dec3
type D144 = Pos3 Dec1 Dec4 Dec4
type D145 = Pos3 Dec1 Dec4 Dec5
type D146 = Pos3 Dec1 Dec4 Dec6
type D147 = Pos3 Dec1 Dec4 Dec7
type D148 = Pos3 Dec1 Dec4 Dec8
type D149 = Pos3 Dec1 Dec4 Dec9
type D150 = Pos3 Dec1 Dec5 Dec0
type D151 = Pos3 Dec1 Dec5 Dec1
type D152 = Pos3 Dec1 Dec5 Dec2
type D153 = Pos3 Dec1 Dec5 Dec3
type D154 = Pos3 Dec1 Dec5 Dec4
type D155 = Pos3 Dec1 Dec5 Dec5
type D156 = Pos3 Dec1 Dec5 Dec6
type D157 = Pos3 Dec1 Dec5 Dec7
type D158 = Pos3 Dec1 Dec5 Dec8
type D159 = Pos3 Dec1 Dec5 Dec9
type D160 = Pos3 Dec1 Dec6 Dec0
type D161 = Pos3 Dec1 Dec6 Dec1
type D162 = Pos3 Dec1 Dec6 Dec2
type D163 = Pos3 Dec1 Dec6 Dec3
type D164 = Pos3 Dec1 Dec6 Dec4
type D165 = Pos3 Dec1 Dec6 Dec5
type D166 = Pos3 Dec1 Dec6 Dec6
type D167 = Pos3 Dec1 Dec6 Dec7
type D168 = Pos3 Dec1 Dec6 Dec8
type D169 = Pos3 Dec1 Dec6 Dec9
type D170 = Pos3 Dec1 Dec7 Dec0
type D171 = Pos3 Dec1 Dec7 Dec1
type D172 = Pos3 Dec1 Dec7 Dec2
type D173 = Pos3 Dec1 Dec7 Dec3
type D174 = Pos3 Dec1 Dec7 Dec4
type D175 = Pos3 Dec1 Dec7 Dec5
type D176 = Pos3 Dec1 Dec7 Dec6
type D177 = Pos3 Dec1 Dec7 Dec7
type D178 = Pos3 Dec1 Dec7 Dec8
type D179 = Pos3 Dec1 Dec7 Dec9
type D180 = Pos3 Dec1 Dec8 Dec0
type D181 = Pos3 Dec1 Dec8 Dec1
type D182 = Pos3 Dec1 Dec8 Dec2
type D183 = Pos3 Dec1 Dec8 Dec3
type D184 = Pos3 Dec1 Dec8 Dec4
type D185 = Pos3 Dec1 Dec8 Dec5
type D186 = Pos3 Dec1 Dec8 Dec6
type D187 = Pos3 Dec1 Dec8 Dec7
type D188 = Pos3 Dec1 Dec8 Dec8
type D189 = Pos3 Dec1 Dec8 Dec9
type D190 = Pos3 Dec1 Dec9 Dec0
type D191 = Pos3 Dec1 Dec9 Dec1
type D192 = Pos3 Dec1 Dec9 Dec2
type D193 = Pos3 Dec1 Dec9 Dec3
type D194 = Pos3 Dec1 Dec9 Dec4
type D195 = Pos3 Dec1 Dec9 Dec5
type D196 = Pos3 Dec1 Dec9 Dec6
type D197 = Pos3 Dec1 Dec9 Dec7
type D198 = Pos3 Dec1 Dec9 Dec8
type D199 = Pos3 Dec1 Dec9 Dec9
type D200 = Pos3 Dec2 Dec0 Dec0
type D201 = Pos3 Dec2 Dec0 Dec1
type D202 = Pos3 Dec2 Dec0 Dec2
type D203 = Pos3 Dec2 Dec0 Dec3
type D204 = Pos3 Dec2 Dec0 Dec4
type D205 = Pos3 Dec2 Dec0 Dec5
type D206 = Pos3 Dec2 Dec0 Dec6
type D207 = Pos3 Dec2 Dec0 Dec7
type D208 = Pos3 Dec2 Dec0 Dec8
type D209 = Pos3 Dec2 Dec0 Dec9
type D210 = Pos3 Dec2 Dec1 Dec0
type D211 = Pos3 Dec2 Dec1 Dec1
type D212 = Pos3 Dec2 Dec1 Dec2
type D213 = Pos3 Dec2 Dec1 Dec3
type D214 = Pos3 Dec2 Dec1 Dec4
type D215 = Pos3 Dec2 Dec1 Dec5
type D216 = Pos3 Dec2 Dec1 Dec6
type D217 = Pos3 Dec2 Dec1 Dec7
type D218 = Pos3 Dec2 Dec1 Dec8
type D219 = Pos3 Dec2 Dec1 Dec9
type D220 = Pos3 Dec2 Dec2 Dec0
type D221 = Pos3 Dec2 Dec2 Dec1
type D222 = Pos3 Dec2 Dec2 Dec2
type D223 = Pos3 Dec2 Dec2 Dec3
type D224 = Pos3 Dec2 Dec2 Dec4
type D225 = Pos3 Dec2 Dec2 Dec5
type D226 = Pos3 Dec2 Dec2 Dec6
type D227 = Pos3 Dec2 Dec2 Dec7
type D228 = Pos3 Dec2 Dec2 Dec8
type D229 = Pos3 Dec2 Dec2 Dec9
type D230 = Pos3 Dec2 Dec3 Dec0
type D231 = Pos3 Dec2 Dec3 Dec1
type D232 = Pos3 Dec2 Dec3 Dec2
type D233 = Pos3 Dec2 Dec3 Dec3
type D234 = Pos3 Dec2 Dec3 Dec4
type D235 = Pos3 Dec2 Dec3 Dec5
type D236 = Pos3 Dec2 Dec3 Dec6
type D237 = Pos3 Dec2 Dec3 Dec7
type D238 = Pos3 Dec2 Dec3 Dec8
type D239 = Pos3 Dec2 Dec3 Dec9
type D240 = Pos3 Dec2 Dec4 Dec0
type D241 = Pos3 Dec2 Dec4 Dec1
type D242 = Pos3 Dec2 Dec4 Dec2
type D243 = Pos3 Dec2 Dec4 Dec3
type D244 = Pos3 Dec2 Dec4 Dec4
type D245 = Pos3 Dec2 Dec4 Dec5
type D246 = Pos3 Dec2 Dec4 Dec6
type D247 = Pos3 Dec2 Dec4 Dec7
type D248 = Pos3 Dec2 Dec4 Dec8
type D249 = Pos3 Dec2 Dec4 Dec9
type D250 = Pos3 Dec2 Dec5 Dec0
type D251 = Pos3 Dec2 Dec5 Dec1
type D252 = Pos3 Dec2 Dec5 Dec2
type D253 = Pos3 Dec2 Dec5 Dec3
type D254 = Pos3 Dec2 Dec5 Dec4
type D255 = Pos3 Dec2 Dec5 Dec5
type D256 = Pos3 Dec2 Dec5 Dec6
type DN1 = Neg1 Dec1
type DN2 = Neg1 Dec2
type DN3 = Neg1 Dec3
type DN4 = Neg1 Dec4
type DN5 = Neg1 Dec5
type DN6 = Neg1 Dec6
type DN7 = Neg1 Dec7
type DN8 = Neg1 Dec8
type DN9 = Neg1 Dec9
type DN10 = Neg2 Dec1 Dec0
type DN11 = Neg2 Dec1 Dec1
type DN12 = Neg2 Dec1 Dec2
type DN13 = Neg2 Dec1 Dec3
type DN14 = Neg2 Dec1 Dec4
type DN15 = Neg2 Dec1 Dec5
type DN16 = Neg2 Dec1 Dec6
type DN17 = Neg2 Dec1 Dec7
type DN18 = Neg2 Dec1 Dec8
type DN19 = Neg2 Dec1 Dec9
type DN20 = Neg2 Dec2 Dec0
type DN21 = Neg2 Dec2 Dec1
type DN22 = Neg2 Dec2 Dec2
type DN23 = Neg2 Dec2 Dec3
type DN24 = Neg2 Dec2 Dec4
type DN25 = Neg2 Dec2 Dec5
type DN26 = Neg2 Dec2 Dec6
type DN27 = Neg2 Dec2 Dec7
type DN28 = Neg2 Dec2 Dec8
type DN29 = Neg2 Dec2 Dec9
type DN30 = Neg2 Dec3 Dec0
type DN31 = Neg2 Dec3 Dec1
type DN32 = Neg2 Dec3 Dec2
type DN33 = Neg2 Dec3 Dec3
type DN34 = Neg2 Dec3 Dec4
type DN35 = Neg2 Dec3 Dec5
type DN36 = Neg2 Dec3 Dec6
type DN37 = Neg2 Dec3 Dec7
type DN38 = Neg2 Dec3 Dec8
type DN39 = Neg2 Dec3 Dec9
type DN40 = Neg2 Dec4 Dec0
type DN41 = Neg2 Dec4 Dec1
type DN42 = Neg2 Dec4 Dec2
type DN43 = Neg2 Dec4 Dec3
type DN44 = Neg2 Dec4 Dec4
type DN45 = Neg2 Dec4 Dec5
type DN46 = Neg2 Dec4 Dec6
type DN47 = Neg2 Dec4 Dec7
type DN48 = Neg2 Dec4 Dec8
type DN49 = Neg2 Dec4 Dec9
type DN50 = Neg2 Dec5 Dec0
type DN51 = Neg2 Dec5 Dec1
type DN52 = Neg2 Dec5 Dec2
type DN53 = Neg2 Dec5 Dec3
type DN54 = Neg2 Dec5 Dec4
type DN55 = Neg2 Dec5 Dec5
type DN56 = Neg2 Dec5 Dec6
type DN57 = Neg2 Dec5 Dec7
type DN58 = Neg2 Dec5 Dec8
type DN59 = Neg2 Dec5 Dec9
type DN60 = Neg2 Dec6 Dec0
type DN61 = Neg2 Dec6 Dec1
type DN62 = Neg2 Dec6 Dec2
type DN63 = Neg2 Dec6 Dec3
type DN64 = Neg2 Dec6 Dec4
type DN65 = Neg2 Dec6 Dec5
type DN66 = Neg2 Dec6 Dec6
type DN67 = Neg2 Dec6 Dec7
type DN68 = Neg2 Dec6 Dec8
type DN69 = Neg2 Dec6 Dec9
type DN70 = Neg2 Dec7 Dec0
type DN71 = Neg2 Dec7 Dec1
type DN72 = Neg2 Dec7 Dec2
type DN73 = Neg2 Dec7 Dec3
type DN74 = Neg2 Dec7 Dec4
type DN75 = Neg2 Dec7 Dec5
type DN76 = Neg2 Dec7 Dec6
type DN77 = Neg2 Dec7 Dec7
type DN78 = Neg2 Dec7 Dec8
type DN79 = Neg2 Dec7 Dec9
type DN80 = Neg2 Dec8 Dec0
type DN81 = Neg2 Dec8 Dec1
type DN82 = Neg2 Dec8 Dec2
type DN83 = Neg2 Dec8 Dec3
type DN84 = Neg2 Dec8 Dec4
type DN85 = Neg2 Dec8 Dec5
type DN86 = Neg2 Dec8 Dec6
type DN87 = Neg2 Dec8 Dec7
type DN88 = Neg2 Dec8 Dec8
type DN89 = Neg2 Dec8 Dec9
type DN90 = Neg2 Dec9 Dec0
type DN91 = Neg2 Dec9 Dec1
type DN92 = Neg2 Dec9 Dec2
type DN93 = Neg2 Dec9 Dec3
type DN94 = Neg2 Dec9 Dec4
type DN95 = Neg2 Dec9 Dec5
type DN96 = Neg2 Dec9 Dec6
type DN97 = Neg2 Dec9 Dec7
type DN98 = Neg2 Dec9 Dec8
type DN99 = Neg2 Dec9 Dec9
type DN100 = Neg3 Dec1 Dec0 Dec0
type DN101 = Neg3 Dec1 Dec0 Dec1
type DN102 = Neg3 Dec1 Dec0 Dec2
type DN103 = Neg3 Dec1 Dec0 Dec3
type DN104 = Neg3 Dec1 Dec0 Dec4
type DN105 = Neg3 Dec1 Dec0 Dec5
type DN106 = Neg3 Dec1 Dec0 Dec6
type DN107 = Neg3 Dec1 Dec0 Dec7
type DN108 = Neg3 Dec1 Dec0 Dec8
type DN109 = Neg3 Dec1 Dec0 Dec9
type DN110 = Neg3 Dec1 Dec1 Dec0
type DN111 = Neg3 Dec1 Dec1 Dec1
type DN112 = Neg3 Dec1 Dec1 Dec2
type DN113 = Neg3 Dec1 Dec1 Dec3
type DN114 = Neg3 Dec1 Dec1 Dec4
type DN115 = Neg3 Dec1 Dec1 Dec5
type DN116 = Neg3 Dec1 Dec1 Dec6
type DN117 = Neg3 Dec1 Dec1 Dec7
type DN118 = Neg3 Dec1 Dec1 Dec8
type DN119 = Neg3 Dec1 Dec1 Dec9
type DN120 = Neg3 Dec1 Dec2 Dec0
type DN121 = Neg3 Dec1 Dec2 Dec1
type DN122 = Neg3 Dec1 Dec2 Dec2
type DN123 = Neg3 Dec1 Dec2 Dec3
type DN124 = Neg3 Dec1 Dec2 Dec4
type DN125 = Neg3 Dec1 Dec2 Dec5
type DN126 = Neg3 Dec1 Dec2 Dec6
type DN127 = Neg3 Dec1 Dec2 Dec7
type DN128 = Neg3 Dec1 Dec2 Dec8
type DN129 = Neg3 Dec1 Dec2 Dec9
type DN130 = Neg3 Dec1 Dec3 Dec0
type DN131 = Neg3 Dec1 Dec3 Dec1
type DN132 = Neg3 Dec1 Dec3 Dec2
type DN133 = Neg3 Dec1 Dec3 Dec3
type DN134 = Neg3 Dec1 Dec3 Dec4
type DN135 = Neg3 Dec1 Dec3 Dec5
type DN136 = Neg3 Dec1 Dec3 Dec6
type DN137 = Neg3 Dec1 Dec3 Dec7
type DN138 = Neg3 Dec1 Dec3 Dec8
type DN139 = Neg3 Dec1 Dec3 Dec9
type DN140 = Neg3 Dec1 Dec4 Dec0
type DN141 = Neg3 Dec1 Dec4 Dec1
type DN142 = Neg3 Dec1 Dec4 Dec2
type DN143 = Neg3 Dec1 Dec4 Dec3
type DN144 = Neg3 Dec1 Dec4 Dec4
type DN145 = Neg3 Dec1 Dec4 Dec5
type DN146 = Neg3 Dec1 Dec4 Dec6
type DN147 = Neg3 Dec1 Dec4 Dec7
type DN148 = Neg3 Dec1 Dec4 Dec8
type DN149 = Neg3 Dec1 Dec4 Dec9
type DN150 = Neg3 Dec1 Dec5 Dec0
type DN151 = Neg3 Dec1 Dec5 Dec1
type DN152 = Neg3 Dec1 Dec5 Dec2
type DN153 = Neg3 Dec1 Dec5 Dec3
type DN154 = Neg3 Dec1 Dec5 Dec4
type DN155 = Neg3 Dec1 Dec5 Dec5
type DN156 = Neg3 Dec1 Dec5 Dec6
type DN157 = Neg3 Dec1 Dec5 Dec7
type DN158 = Neg3 Dec1 Dec5 Dec8
type DN159 = Neg3 Dec1 Dec5 Dec9
type DN160 = Neg3 Dec1 Dec6 Dec0
type DN161 = Neg3 Dec1 Dec6 Dec1
type DN162 = Neg3 Dec1 Dec6 Dec2
type DN163 = Neg3 Dec1 Dec6 Dec3
type DN164 = Neg3 Dec1 Dec6 Dec4
type DN165 = Neg3 Dec1 Dec6 Dec5
type DN166 = Neg3 Dec1 Dec6 Dec6
type DN167 = Neg3 Dec1 Dec6 Dec7
type DN168 = Neg3 Dec1 Dec6 Dec8
type DN169 = Neg3 Dec1 Dec6 Dec9
type DN170 = Neg3 Dec1 Dec7 Dec0
type DN171 = Neg3 Dec1 Dec7 Dec1
type DN172 = Neg3 Dec1 Dec7 Dec2
type DN173 = Neg3 Dec1 Dec7 Dec3
type DN174 = Neg3 Dec1 Dec7 Dec4
type DN175 = Neg3 Dec1 Dec7 Dec5
type DN176 = Neg3 Dec1 Dec7 Dec6
type DN177 = Neg3 Dec1 Dec7 Dec7
type DN178 = Neg3 Dec1 Dec7 Dec8
type DN179 = Neg3 Dec1 Dec7 Dec9
type DN180 = Neg3 Dec1 Dec8 Dec0
type DN181 = Neg3 Dec1 Dec8 Dec1
type DN182 = Neg3 Dec1 Dec8 Dec2
type DN183 = Neg3 Dec1 Dec8 Dec3
type DN184 = Neg3 Dec1 Dec8 Dec4
type DN185 = Neg3 Dec1 Dec8 Dec5
type DN186 = Neg3 Dec1 Dec8 Dec6
type DN187 = Neg3 Dec1 Dec8 Dec7
type DN188 = Neg3 Dec1 Dec8 Dec8
type DN189 = Neg3 Dec1 Dec8 Dec9
type DN190 = Neg3 Dec1 Dec9 Dec0
type DN191 = Neg3 Dec1 Dec9 Dec1
type DN192 = Neg3 Dec1 Dec9 Dec2
type DN193 = Neg3 Dec1 Dec9 Dec3
type DN194 = Neg3 Dec1 Dec9 Dec4
type DN195 = Neg3 Dec1 Dec9 Dec5
type DN196 = Neg3 Dec1 Dec9 Dec6
type DN197 = Neg3 Dec1 Dec9 Dec7
type DN198 = Neg3 Dec1 Dec9 Dec8
type DN199 = Neg3 Dec1 Dec9 Dec9
type DN200 = Neg3 Dec2 Dec0 Dec0
type DN201 = Neg3 Dec2 Dec0 Dec1
type DN202 = Neg3 Dec2 Dec0 Dec2
type DN203 = Neg3 Dec2 Dec0 Dec3
type DN204 = Neg3 Dec2 Dec0 Dec4
type DN205 = Neg3 Dec2 Dec0 Dec5
type DN206 = Neg3 Dec2 Dec0 Dec6
type DN207 = Neg3 Dec2 Dec0 Dec7
type DN208 = Neg3 Dec2 Dec0 Dec8
type DN209 = Neg3 Dec2 Dec0 Dec9
type DN210 = Neg3 Dec2 Dec1 Dec0
type DN211 = Neg3 Dec2 Dec1 Dec1
type DN212 = Neg3 Dec2 Dec1 Dec2
type DN213 = Neg3 Dec2 Dec1 Dec3
type DN214 = Neg3 Dec2 Dec1 Dec4
type DN215 = Neg3 Dec2 Dec1 Dec5
type DN216 = Neg3 Dec2 Dec1 Dec6
type DN217 = Neg3 Dec2 Dec1 Dec7
type DN218 = Neg3 Dec2 Dec1 Dec8
type DN219 = Neg3 Dec2 Dec1 Dec9
type DN220 = Neg3 Dec2 Dec2 Dec0
type DN221 = Neg3 Dec2 Dec2 Dec1
type DN222 = Neg3 Dec2 Dec2 Dec2
type DN223 = Neg3 Dec2 Dec2 Dec3
type DN224 = Neg3 Dec2 Dec2 Dec4
type DN225 = Neg3 Dec2 Dec2 Dec5
type DN226 = Neg3 Dec2 Dec2 Dec6
type DN227 = Neg3 Dec2 Dec2 Dec7
type DN228 = Neg3 Dec2 Dec2 Dec8
type DN229 = Neg3 Dec2 Dec2 Dec9
type DN230 = Neg3 Dec2 Dec3 Dec0
type DN231 = Neg3 Dec2 Dec3 Dec1
type DN232 = Neg3 Dec2 Dec3 Dec2
type DN233 = Neg3 Dec2 Dec3 Dec3
type DN234 = Neg3 Dec2 Dec3 Dec4
type DN235 = Neg3 Dec2 Dec3 Dec5
type DN236 = Neg3 Dec2 Dec3 Dec6
type DN237 = Neg3 Dec2 Dec3 Dec7
type DN238 = Neg3 Dec2 Dec3 Dec8
type DN239 = Neg3 Dec2 Dec3 Dec9
type DN240 = Neg3 Dec2 Dec4 Dec0
type DN241 = Neg3 Dec2 Dec4 Dec1
type DN242 = Neg3 Dec2 Dec4 Dec2
type DN243 = Neg3 Dec2 Dec4 Dec3
type DN244 = Neg3 Dec2 Dec4 Dec4
type DN245 = Neg3 Dec2 Dec4 Dec5
type DN246 = Neg3 Dec2 Dec4 Dec6
type DN247 = Neg3 Dec2 Dec4 Dec7
type DN248 = Neg3 Dec2 Dec4 Dec8
type DN249 = Neg3 Dec2 Dec4 Dec9
type DN250 = Neg3 Dec2 Dec5 Dec0
type DN251 = Neg3 Dec2 Dec5 Dec1
type DN252 = Neg3 Dec2 Dec5 Dec2
type DN253 = Neg3 Dec2 Dec5 Dec3
type DN254 = Neg3 Dec2 Dec5 Dec4
type DN255 = Neg3 Dec2 Dec5 Dec5
type DN256 = Neg3 Dec2 Dec5 Dec6
d0 :: Proxy D0
d1 :: Proxy D1
d2 :: Proxy D2
d3 :: Proxy D3
d4 :: Proxy D4
d5 :: Proxy D5
d6 :: Proxy D6
d7 :: Proxy D7
d8 :: Proxy D8
d9 :: Proxy D9
d10 :: Proxy D10
d11 :: Proxy D11
d12 :: Proxy D12
d13 :: Proxy D13
d14 :: Proxy D14
d15 :: Proxy D15
d16 :: Proxy D16
d17 :: Proxy D17
d18 :: Proxy D18
d19 :: Proxy D19
d20 :: Proxy D20
d21 :: Proxy D21
d22 :: Proxy D22
d23 :: Proxy D23
d24 :: Proxy D24
d25 :: Proxy D25
d26 :: Proxy D26
d27 :: Proxy D27
d28 :: Proxy D28
d29 :: Proxy D29
d30 :: Proxy D30
d31 :: Proxy D31
d32 :: Proxy D32
d33 :: Proxy D33
d34 :: Proxy D34
d35 :: Proxy D35
d36 :: Proxy D36
d37 :: Proxy D37
d38 :: Proxy D38
d39 :: Proxy D39
d40 :: Proxy D40
d41 :: Proxy D41
d42 :: Proxy D42
d43 :: Proxy D43
d44 :: Proxy D44
d45 :: Proxy D45
d46 :: Proxy D46
d47 :: Proxy D47
d48 :: Proxy D48
d49 :: Proxy D49
d50 :: Proxy D50
d51 :: Proxy D51
d52 :: Proxy D52
d53 :: Proxy D53
d54 :: Proxy D54
d55 :: Proxy D55
d56 :: Proxy D56
d57 :: Proxy D57
d58 :: Proxy D58
d59 :: Proxy D59
d60 :: Proxy D60
d61 :: Proxy D61
d62 :: Proxy D62
d63 :: Proxy D63
d64 :: Proxy D64
d65 :: Proxy D65
d66 :: Proxy D66
d67 :: Proxy D67
d68 :: Proxy D68
d69 :: Proxy D69
d70 :: Proxy D70
d71 :: Proxy D71
d72 :: Proxy D72
d73 :: Proxy D73
d74 :: Proxy D74
d75 :: Proxy D75
d76 :: Proxy D76
d77 :: Proxy D77
d78 :: Proxy D78
d79 :: Proxy D79
d80 :: Proxy D80
d81 :: Proxy D81
d82 :: Proxy D82
d83 :: Proxy D83
d84 :: Proxy D84
d85 :: Proxy D85
d86 :: Proxy D86
d87 :: Proxy D87
d88 :: Proxy D88
d89 :: Proxy D89
d90 :: Proxy D90
d91 :: Proxy D91
d92 :: Proxy D92
d93 :: Proxy D93
d94 :: Proxy D94
d95 :: Proxy D95
d96 :: Proxy D96
d97 :: Proxy D97
d98 :: Proxy D98
d99 :: Proxy D99
d100 :: Proxy D100
d101 :: Proxy D101
d102 :: Proxy D102
d103 :: Proxy D103
d104 :: Proxy D104
d105 :: Proxy D105
d106 :: Proxy D106
d107 :: Proxy D107
d108 :: Proxy D108
d109 :: Proxy D109
d110 :: Proxy D110
d111 :: Proxy D111
d112 :: Proxy D112
d113 :: Proxy D113
d114 :: Proxy D114
d115 :: Proxy D115
d116 :: Proxy D116
d117 :: Proxy D117
d118 :: Proxy D118
d119 :: Proxy D119
d120 :: Proxy D120
d121 :: Proxy D121
d122 :: Proxy D122
d123 :: Proxy D123
d124 :: Proxy D124
d125 :: Proxy D125
d126 :: Proxy D126
d127 :: Proxy D127
d128 :: Proxy D128
d129 :: Proxy D129
d130 :: Proxy D130
d131 :: Proxy D131
d132 :: Proxy D132
d133 :: Proxy D133
d134 :: Proxy D134
d135 :: Proxy D135
d136 :: Proxy D136
d137 :: Proxy D137
d138 :: Proxy D138
d139 :: Proxy D139
d140 :: Proxy D140
d141 :: Proxy D141
d142 :: Proxy D142
d143 :: Proxy D143
d144 :: Proxy D144
d145 :: Proxy D145
d146 :: Proxy D146
d147 :: Proxy D147
d148 :: Proxy D148
d149 :: Proxy D149
d150 :: Proxy D150
d151 :: Proxy D151
d152 :: Proxy D152
d153 :: Proxy D153
d154 :: Proxy D154
d155 :: Proxy D155
d156 :: Proxy D156
d157 :: Proxy D157
d158 :: Proxy D158
d159 :: Proxy D159
d160 :: Proxy D160
d161 :: Proxy D161
d162 :: Proxy D162
d163 :: Proxy D163
d164 :: Proxy D164
d165 :: Proxy D165
d166 :: Proxy D166
d167 :: Proxy D167
d168 :: Proxy D168
d169 :: Proxy D169
d170 :: Proxy D170
d171 :: Proxy D171
d172 :: Proxy D172
d173 :: Proxy D173
d174 :: Proxy D174
d175 :: Proxy D175
d176 :: Proxy D176
d177 :: Proxy D177
d178 :: Proxy D178
d179 :: Proxy D179
d180 :: Proxy D180
d181 :: Proxy D181
d182 :: Proxy D182
d183 :: Proxy D183
d184 :: Proxy D184
d185 :: Proxy D185
d186 :: Proxy D186
d187 :: Proxy D187
d188 :: Proxy D188
d189 :: Proxy D189
d190 :: Proxy D190
d191 :: Proxy D191
d192 :: Proxy D192
d193 :: Proxy D193
d194 :: Proxy D194
d195 :: Proxy D195
d196 :: Proxy D196
d197 :: Proxy D197
d198 :: Proxy D198
d199 :: Proxy D199
d200 :: Proxy D200
d201 :: Proxy D201
d202 :: Proxy D202
d203 :: Proxy D203
d204 :: Proxy D204
d205 :: Proxy D205
d206 :: Proxy D206
d207 :: Proxy D207
d208 :: Proxy D208
d209 :: Proxy D209
d210 :: Proxy D210
d211 :: Proxy D211
d212 :: Proxy D212
d213 :: Proxy D213
d214 :: Proxy D214
d215 :: Proxy D215
d216 :: Proxy D216
d217 :: Proxy D217
d218 :: Proxy D218
d219 :: Proxy D219
d220 :: Proxy D220
d221 :: Proxy D221
d222 :: Proxy D222
d223 :: Proxy D223
d224 :: Proxy D224
d225 :: Proxy D225
d226 :: Proxy D226
d227 :: Proxy D227
d228 :: Proxy D228
d229 :: Proxy D229
d230 :: Proxy D230
d231 :: Proxy D231
d232 :: Proxy D232
d233 :: Proxy D233
d234 :: Proxy D234
d235 :: Proxy D235
d236 :: Proxy D236
d237 :: Proxy D237
d238 :: Proxy D238
d239 :: Proxy D239
d240 :: Proxy D240
d241 :: Proxy D241
d242 :: Proxy D242
d243 :: Proxy D243
d244 :: Proxy D244
d245 :: Proxy D245
d246 :: Proxy D246
d247 :: Proxy D247
d248 :: Proxy D248
d249 :: Proxy D249
d250 :: Proxy D250
d251 :: Proxy D251
d252 :: Proxy D252
d253 :: Proxy D253
d254 :: Proxy D254
d255 :: Proxy D255
d256 :: Proxy D256
dn1 :: Proxy DN1
dn2 :: Proxy DN2
dn3 :: Proxy DN3
dn4 :: Proxy DN4
dn5 :: Proxy DN5
dn6 :: Proxy DN6
dn7 :: Proxy DN7
dn8 :: Proxy DN8
dn9 :: Proxy DN9
dn10 :: Proxy DN10
dn11 :: Proxy DN11
dn12 :: Proxy DN12
dn13 :: Proxy DN13
dn14 :: Proxy DN14
dn15 :: Proxy DN15
dn16 :: Proxy DN16
dn17 :: Proxy DN17
dn18 :: Proxy DN18
dn19 :: Proxy DN19
dn20 :: Proxy DN20
dn21 :: Proxy DN21
dn22 :: Proxy DN22
dn23 :: Proxy DN23
dn24 :: Proxy DN24
dn25 :: Proxy DN25
dn26 :: Proxy DN26
dn27 :: Proxy DN27
dn28 :: Proxy DN28
dn29 :: Proxy DN29
dn30 :: Proxy DN30
dn31 :: Proxy DN31
dn32 :: Proxy DN32
dn33 :: Proxy DN33
dn34 :: Proxy DN34
dn35 :: Proxy DN35
dn36 :: Proxy DN36
dn37 :: Proxy DN37
dn38 :: Proxy DN38
dn39 :: Proxy DN39
dn40 :: Proxy DN40
dn41 :: Proxy DN41
dn42 :: Proxy DN42
dn43 :: Proxy DN43
dn44 :: Proxy DN44
dn45 :: Proxy DN45
dn46 :: Proxy DN46
dn47 :: Proxy DN47
dn48 :: Proxy DN48
dn49 :: Proxy DN49
dn50 :: Proxy DN50
dn51 :: Proxy DN51
dn52 :: Proxy DN52
dn53 :: Proxy DN53
dn54 :: Proxy DN54
dn55 :: Proxy DN55
dn56 :: Proxy DN56
dn57 :: Proxy DN57
dn58 :: Proxy DN58
dn59 :: Proxy DN59
dn60 :: Proxy DN60
dn61 :: Proxy DN61
dn62 :: Proxy DN62
dn63 :: Proxy DN63
dn64 :: Proxy DN64
dn65 :: Proxy DN65
dn66 :: Proxy DN66
dn67 :: Proxy DN67
dn68 :: Proxy DN68
dn69 :: Proxy DN69
dn70 :: Proxy DN70
dn71 :: Proxy DN71
dn72 :: Proxy DN72
dn73 :: Proxy DN73
dn74 :: Proxy DN74
dn75 :: Proxy DN75
dn76 :: Proxy DN76
dn77 :: Proxy DN77
dn78 :: Proxy DN78
dn79 :: Proxy DN79
dn80 :: Proxy DN80
dn81 :: Proxy DN81
dn82 :: Proxy DN82
dn83 :: Proxy DN83
dn84 :: Proxy DN84
dn85 :: Proxy DN85
dn86 :: Proxy DN86
dn87 :: Proxy DN87
dn88 :: Proxy DN88
dn89 :: Proxy DN89
dn90 :: Proxy DN90
dn91 :: Proxy DN91
dn92 :: Proxy DN92
dn93 :: Proxy DN93
dn94 :: Proxy DN94
dn95 :: Proxy DN95
dn96 :: Proxy DN96
dn97 :: Proxy DN97
dn98 :: Proxy DN98
dn99 :: Proxy DN99
dn100 :: Proxy DN100
dn101 :: Proxy DN101
dn102 :: Proxy DN102
dn103 :: Proxy DN103
dn104 :: Proxy DN104
dn105 :: Proxy DN105
dn106 :: Proxy DN106
dn107 :: Proxy DN107
dn108 :: Proxy DN108
dn109 :: Proxy DN109
dn110 :: Proxy DN110
dn111 :: Proxy DN111
dn112 :: Proxy DN112
dn113 :: Proxy DN113
dn114 :: Proxy DN114
dn115 :: Proxy DN115
dn116 :: Proxy DN116
dn117 :: Proxy DN117
dn118 :: Proxy DN118
dn119 :: Proxy DN119
dn120 :: Proxy DN120
dn121 :: Proxy DN121
dn122 :: Proxy DN122
dn123 :: Proxy DN123
dn124 :: Proxy DN124
dn125 :: Proxy DN125
dn126 :: Proxy DN126
dn127 :: Proxy DN127
dn128 :: Proxy DN128
dn129 :: Proxy DN129
dn130 :: Proxy DN130
dn131 :: Proxy DN131
dn132 :: Proxy DN132
dn133 :: Proxy DN133
dn134 :: Proxy DN134
dn135 :: Proxy DN135
dn136 :: Proxy DN136
dn137 :: Proxy DN137
dn138 :: Proxy DN138
dn139 :: Proxy DN139
dn140 :: Proxy DN140
dn141 :: Proxy DN141
dn142 :: Proxy DN142
dn143 :: Proxy DN143
dn144 :: Proxy DN144
dn145 :: Proxy DN145
dn146 :: Proxy DN146
dn147 :: Proxy DN147
dn148 :: Proxy DN148
dn149 :: Proxy DN149
dn150 :: Proxy DN150
dn151 :: Proxy DN151
dn152 :: Proxy DN152
dn153 :: Proxy DN153
dn154 :: Proxy DN154
dn155 :: Proxy DN155
dn156 :: Proxy DN156
dn157 :: Proxy DN157
dn158 :: Proxy DN158
dn159 :: Proxy DN159
dn160 :: Proxy DN160
dn161 :: Proxy DN161
dn162 :: Proxy DN162
dn163 :: Proxy DN163
dn164 :: Proxy DN164
dn165 :: Proxy DN165
dn166 :: Proxy DN166
dn167 :: Proxy DN167
dn168 :: Proxy DN168
dn169 :: Proxy DN169
dn170 :: Proxy DN170
dn171 :: Proxy DN171
dn172 :: Proxy DN172
dn173 :: Proxy DN173
dn174 :: Proxy DN174
dn175 :: Proxy DN175
dn176 :: Proxy DN176
dn177 :: Proxy DN177
dn178 :: Proxy DN178
dn179 :: Proxy DN179
dn180 :: Proxy DN180
dn181 :: Proxy DN181
dn182 :: Proxy DN182
dn183 :: Proxy DN183
dn184 :: Proxy DN184
dn185 :: Proxy DN185
dn186 :: Proxy DN186
dn187 :: Proxy DN187
dn188 :: Proxy DN188
dn189 :: Proxy DN189
dn190 :: Proxy DN190
dn191 :: Proxy DN191
dn192 :: Proxy DN192
dn193 :: Proxy DN193
dn194 :: Proxy DN194
dn195 :: Proxy DN195
dn196 :: Proxy DN196
dn197 :: Proxy DN197
dn198 :: Proxy DN198
dn199 :: Proxy DN199
dn200 :: Proxy DN200
dn201 :: Proxy DN201
dn202 :: Proxy DN202
dn203 :: Proxy DN203
dn204 :: Proxy DN204
dn205 :: Proxy DN205
dn206 :: Proxy DN206
dn207 :: Proxy DN207
dn208 :: Proxy DN208
dn209 :: Proxy DN209
dn210 :: Proxy DN210
dn211 :: Proxy DN211
dn212 :: Proxy DN212
dn213 :: Proxy DN213
dn214 :: Proxy DN214
dn215 :: Proxy DN215
dn216 :: Proxy DN216
dn217 :: Proxy DN217
dn218 :: Proxy DN218
dn219 :: Proxy DN219
dn220 :: Proxy DN220
dn221 :: Proxy DN221
dn222 :: Proxy DN222
dn223 :: Proxy DN223
dn224 :: Proxy DN224
dn225 :: Proxy DN225
dn226 :: Proxy DN226
dn227 :: Proxy DN227
dn228 :: Proxy DN228
dn229 :: Proxy DN229
dn230 :: Proxy DN230
dn231 :: Proxy DN231
dn232 :: Proxy DN232
dn233 :: Proxy DN233
dn234 :: Proxy DN234
dn235 :: Proxy DN235
dn236 :: Proxy DN236
dn237 :: Proxy DN237
dn238 :: Proxy DN238
dn239 :: Proxy DN239
dn240 :: Proxy DN240
dn241 :: Proxy DN241
dn242 :: Proxy DN242
dn243 :: Proxy DN243
dn244 :: Proxy DN244
dn245 :: Proxy DN245
dn246 :: Proxy DN246
dn247 :: Proxy DN247
dn248 :: Proxy DN248
dn249 :: Proxy DN249
dn250 :: Proxy DN250
dn251 :: Proxy DN251
dn252 :: Proxy DN252
dn253 :: Proxy DN253
dn254 :: Proxy DN254
dn255 :: Proxy DN255
dn256 :: Proxy DN256
module Type.Data.Num.Decimal
module Type.Data.Num.Decimal.Proof
data Digits xs
Digits :: Digits xs
data UnaryNat n
UnaryNat :: UnaryNat n
unaryNat :: Natural n => UnaryNat n
data UnaryPos n
UnaryPos :: UnaryPos n
unaryPos :: Positive n => UnaryPos n
module Data.SizedInt
data SizedInt nT
instance Natural nT => Bits (SizedInt nT)
instance Natural nT => Integral (SizedInt nT)
instance Natural nT => Real (SizedInt nT)
instance Natural nT => Num (SizedInt nT)
instance Natural nT => Enum (SizedInt nT)
instance Natural nT => Bounded (SizedInt nT)
instance Natural nT => Ord (SizedInt nT)
instance Natural nT => Read (SizedInt nT)
instance Natural nT => Show (SizedInt nT)
instance Natural nT => Eq (SizedInt nT)