module Language.Haskell.TH.Unification (subTerm, Term(..), MonadUnify(..), UnifT, Explicit(..), solveUnification) where
import Control.Monad
import Data.Map hiding (map)
import Control.Monad.State.Strict
import Control.Monad.Error
data Term f v a = App f (Term f v a) (Term f v a) | Atom a | Var v deriving (Eq, Show)
data Explicit f a = AppE f (Explicit f a) (Explicit f a) | AtomE a deriving (Eq, Show)
type Solution f v a = Map v (Explicit f a)
data Constraint f v a = Term f v a :==: Term f v a
type Constraints f v a = [Constraint f v a]
newtype UnifT f v a m x = UnifT (StateT (Constraints f v a) (ErrorT String m) x)
deriving instance (Monad m) => Monad (UnifT f v a m)
deriving instance (Monad m) => MonadState (Constraints f v a) (UnifT f v a m)
class Monad m => MonadUnify u m | m -> u where
unify :: u -> u -> m ()
instance Monad m => MonadUnify (Term f v a) (UnifT f v a m) where
a `unify` b = modify ((a :==: b):)
instance MonadUnify u m => MonadUnify u (StateT s m) where
a `unify` b = lift (a `unify` b)
instance MonadTrans (UnifT f v a) where
lift = UnifT . lift . lift
runUnification :: (Ord v, Eq f, Eq a, Monad m) => UnifT f v a m x -> m (Either String (Constraints f v a))
runUnification (UnifT m) = runErrorT (execStateT m [])
solveUnification :: (Ord v, Eq f, Eq a, Monad m) => Explicit f a -> UnifT f v a m x -> m (Either String (x, Solution f v a))
solveUnification def (UnifT m) = runErrorT (evalStateT m' [])
where m' = do x <- m
ans <- solve def =<< get
return (x, ans)
solve :: (Ord v, Eq f, Eq a, Monad m) => Explicit f a -> Constraints f v a -> m (Solution f v a)
solve def (constr:constrs) = case constr of
Var x :==: Var y
| x == y -> solve def constrs
Var x :==: t
-> subSol def x t `liftM` solve def (substitute x t constrs)
t :==: Var y
-> subSol def y t `liftM` solve def (substitute y t constrs)
Atom a :==: Atom b
| a == b -> solve def constrs
| otherwise -> fail "Mismatched atoms"
App f1 x1 y1 :==: App f2 x2 y2
| f1 == f2 -> solve def ([x1 :==: x2, y1 :==: y2] ++ constrs)
| otherwise -> fail "Mismatched functions"
_ -> fail "Function matched to atom"
solve _ [] = return empty
substitute :: (Ord v, Eq f, Eq a) => v -> Term f v a -> Constraints f v a -> Constraints f v a
substitute v t = map (\ (x :==: y) -> sub x :==: sub y) where
sub (Var v')
| v == v' = t
sub (App f x y) = App f (sub x) (sub y)
sub t' = t'
subTerm :: Ord v => Explicit f a -> Solution f v a -> Term f v a -> Explicit f a
subTerm def sol (Var v) = findWithDefault def v sol
subTerm def sol (App f x y) = AppE f (subTerm def sol x) (subTerm def sol y)
subTerm _ _ (Atom a) = AtomE a
subSol :: (Ord v, Eq f, Eq a) => Explicit f a -> v -> Term f v a -> Solution f v a -> Solution f v a
subSol def v t sol = insert v (subTerm def sol t) sol