module Language.Haskell.TH.Unification (subTerm, Term(..), MonadUnify(..), UnifT, Explicit(..), solveUnification) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative (Applicative)
#endif
import Control.Monad
import Data.Map as Map hiding (map)
import Data.Set as Set (Set, insert, map, minView)
import Control.Monad.State.Strict
import Control.Monad.Except
data Term f v a = App f (Term f v a) (Term f v a) | Atom a | Var v deriving (Eq, Ord, Show)
data Explicit f a = AppE f (Explicit f a) (Explicit f a) | AtomE a deriving (Eq, Ord, Show)
type Solution f v a = Map v (Explicit f a)
data Constraint f v a = Term f v a :==: Term f v a deriving (Eq, Ord, Show)
type Constraints f v a = Set (Constraint f v a)
newtype UnifT f v a m x = UnifT (StateT (Constraints f v a) (ExceptT String m) x)
deriving instance Functor m => Functor (UnifT f v a m)
deriving instance (Monad m, Functor m) => Applicative (UnifT f v a m)
deriving instance (Monad m) => Monad (UnifT f v a m)
deriving instance (Monad m) => MonadState (Constraints f v a) (UnifT f v a m)
class Monad m => MonadUnify u m | m -> u where
unify :: u -> u -> m ()
instance (Monad m, Ord a, Ord v, Ord f) => MonadUnify (Term f v a) (UnifT f v a m) where
a `unify` b = modify (Set.insert (a :==: b))
instance MonadUnify u m => MonadUnify u (StateT s m) where
a `unify` b = lift (a `unify` b)
instance MonadTrans (UnifT f v a) where
lift = UnifT . lift . lift
runUnification :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => UnifT f v a m x -> m (Either String (Constraints f v a))
runUnification (UnifT m) = runExceptT (execStateT m mempty)
solveUnification :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => Explicit f a -> UnifT f v a m x -> m (Either String (x, Solution f v a))
solveUnification def (UnifT m) = runExceptT (evalStateT m' mempty)
where m' = do x <- m
ans <- solve def =<< get
return (x, ans)
solve :: (Ord a, Ord v, Ord f, Eq f, Eq a, Monad m) => Explicit f a -> Constraints f v a -> m (Solution f v a)
solve def constrs0 = case Set.minView constrs0 of
Just (Var x :==: Var y, constrs)
| x == y -> solve def constrs
Just (Var x :==: t, constrs)
-> subSol def x t `liftM` solve def (substitute x t constrs)
Just (t :==: Var y, constrs)
-> subSol def y t `liftM` solve def (substitute y t constrs)
Just (Atom a :==: Atom b, constrs)
| a == b -> solve def constrs
| otherwise -> fail "Mismatched atoms"
Just (App f1 x1 y1 :==: App f2 x2 y2, constrs)
| f1 == f2 -> solve def (Set.insert (x1 :==: x2) (Set.insert (y1 :==: y2) constrs))
| otherwise -> fail "Mismatched functions"
Just (_, _) -> fail "Function matched to atom"
Nothing -> return empty
substitute :: (Ord a, Ord v, Ord f, Eq f, Eq a) => v -> Term f v a -> Constraints f v a -> Constraints f v a
substitute v t = Set.map (\ (x :==: y) -> sub x :==: sub y) where
sub (Var v')
| v == v' = t
sub (App f x y) = App f (sub x) (sub y)
sub t' = t'
subTerm :: Ord v => Explicit f a -> Solution f v a -> Term f v a -> Explicit f a
subTerm def sol (Var v) = findWithDefault def v sol
subTerm def sol (App f x y) = AppE f (subTerm def sol x) (subTerm def sol y)
subTerm _ _ (Atom a) = AtomE a
subSol :: (Ord v, Eq f, Eq a) => Explicit f a -> v -> Term f v a -> Solution f v a -> Solution f v a
subSol def v t sol = Map.insert v (subTerm def sol t) sol