-- | Operations using @MonadReader (TypeGraphInfo hint)@. {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# OPTIONS_GHC -Wall #-} module Language.Haskell.TH.TypeGraph.Monad ( fieldVertices , allVertices , vertex , typeVertex , fieldVertex , typeGraphEdges , simpleEdges , simpleVertex ) where #if __GLASGOW_HASKELL__ < 709 import Control.Applicative ((<$>)) import Data.Monoid (mempty) #endif import Control.Lens -- (makeLenses, view) import Control.Monad.Reader (MonadReader) import Control.Monad.State (execStateT, modify, StateT) import Data.Default (Default(def)) import Data.Foldable import Data.List as List (map) import Data.Map as Map ((!), alter, findWithDefault, map, mapKeysWith, mapWithKey) import Data.Monoid (Monoid, (<>)) import Data.Set as Set (delete, empty, insert, map, Set, singleton, union) import Language.Haskell.Exts.Syntax () import Language.Haskell.TH -- (Con, Dec, nameBase, Type) import Language.Haskell.TH.TypeGraph.Core (Field) import Language.Haskell.TH.TypeGraph.Expand (E(E), expandType) import Language.Haskell.TH.TypeGraph.Graph (GraphEdges) import Language.Haskell.TH.TypeGraph.Info (TypeGraphInfo, fields, infoMap, synonyms, typeSet) import Language.Haskell.TH.TypeGraph.Vertex (TypeGraphVertex(..), etype, field) import Language.Haskell.TH.Desugar as DS (DsMonad) import Language.Haskell.TH.Instances () import Prelude hiding (foldr, mapM_, null) allVertices :: (Functor m, DsMonad m, MonadReader TypeGraphInfo m) => Maybe Field -> E Type -> m (Set TypeGraphVertex) allVertices (Just fld) etyp = singleton <$> vertex (Just fld) etyp allVertices Nothing etyp = vertex Nothing etyp >>= \v -> fieldVertices v >>= \vs -> return $ Set.insert v vs -- | Build the vertices that involve a particular type - if the field -- is specified it return s singleton, otherwise it returns a set -- containing a vertex one for the type on its own, and one for each -- field containing that type. fieldVertices :: MonadReader TypeGraphInfo m => TypeGraphVertex -> m (Set TypeGraphVertex) fieldVertices v = do fm <- view fields let fs = Map.findWithDefault Set.empty (view etype v) fm return $ Set.map (\fld' -> set field (Just fld') v) fs -- | Build a vertex from the given 'Type' and optional 'Field'. vertex :: forall m. (DsMonad m, MonadReader TypeGraphInfo m) => Maybe Field -> E Type -> m TypeGraphVertex vertex fld etyp = maybe (typeVertex etyp) (fieldVertex etyp) fld -- | Build a non-field vertex typeVertex :: MonadReader TypeGraphInfo m => E Type -> m TypeGraphVertex typeVertex etyp = do sm <- view synonyms return $ TypeGraphVertex {_field = Nothing, _syns = Map.findWithDefault Set.empty etyp sm, _etype = etyp} -- | Build a vertex associated with a field fieldVertex :: MonadReader TypeGraphInfo m => E Type -> Field -> m TypeGraphVertex fieldVertex etyp fld' = typeVertex etyp >>= \v -> return $ v {_field = Just fld'} -- | Given the discovered set of types and maps of type synonyms and -- fields, build and return the GraphEdges relation on TypeGraphVertex. -- This is not a recursive function, it stops when it reaches the field -- types. typeGraphEdges :: forall hint m. (DsMonad m, Functor m, Default hint, MonadReader TypeGraphInfo m) => m (GraphEdges hint TypeGraphVertex) typeGraphEdges = do execStateT (view typeSet >>= \ts -> mapM_ (\t -> expandType t >>= doType) ts) mempty where doType :: E Type -> StateT (GraphEdges hint TypeGraphVertex) m () doType typ = do vs <- allVertices Nothing typ mapM_ node vs case typ of E (ConT tname) -> view infoMap >>= \ mp -> doInfo vs (mp ! tname) E (AppT typ1 typ2) -> do v1 <- vertex Nothing (E typ1) v2 <- vertex Nothing (E typ2) mapM_ (flip edge v1) vs mapM_ (flip edge v2) vs doType (E typ1) doType (E typ2) _ -> return () doInfo :: Set TypeGraphVertex -> Info -> StateT (GraphEdges hint TypeGraphVertex) m () doInfo vs (TyConI dec) = doDec vs dec -- doInfo vs (PrimTyConI tname _ _) = return () doInfo _ _ = return () doDec :: Set TypeGraphVertex -> Dec -> StateT (GraphEdges hint TypeGraphVertex) m () doDec _ (TySynD _ _ _) = return () -- This type will be in typeSet doDec vs (NewtypeD _ tname _ constr _) = doCon vs tname constr doDec vs (DataD _ tname _ constrs _) = mapM_ (doCon vs tname) constrs doDec _ _ = return () doCon :: Set TypeGraphVertex -> Name -> Con -> StateT (GraphEdges hint TypeGraphVertex) m () doCon vs tname (ForallC _ _ con) = doCon vs tname con doCon vs tname (NormalC cname flds) = mapM_ (uncurry (doField vs tname cname)) (List.map (\ (n, (_, ftype)) -> (Left n, ftype)) (zip [1..] flds)) doCon vs tname (RecC cname flds) = mapM_ (uncurry (doField vs tname cname)) (List.map (\ (fname, _, ftype) -> (Right fname, ftype)) flds) doCon vs tname (InfixC (_, lhs) cname (_, rhs)) = doField vs tname cname (Left 1) lhs >> doField vs tname cname (Left 2) rhs -- Connect the vertex for this record type to one particular field vertex doField :: DsMonad m => Set TypeGraphVertex -> Name -> Name -> Either Int Name -> Type -> StateT (GraphEdges hint TypeGraphVertex) m () doField vs tname cname fld ftyp = do v2 <- expandType ftyp >>= vertex (Just (tname, cname, fld)) v3 <- expandType ftyp >>= vertex Nothing edge v2 v3 mapM_ (flip edge v2) vs -- Here's where we don't recurse, see? -- doVertex v2 node :: TypeGraphVertex -> StateT (GraphEdges hint TypeGraphVertex) m () node v = modify (Map.alter (Just . maybe (def, Set.empty) id) v) edge :: TypeGraphVertex -> TypeGraphVertex -> StateT (GraphEdges hint TypeGraphVertex) m () edge v1 v2 = modify f >> node v2 where f :: GraphEdges hint TypeGraphVertex -> GraphEdges hint TypeGraphVertex f = Map.alter g v1 g :: (Maybe (hint, Set TypeGraphVertex) -> Maybe (hint, Set TypeGraphVertex)) g = Just . maybe (def, singleton v2) (over _2 (Set.insert v2)) -- | Simplify a graph by throwing away the field information in each -- node. This means the nodes only contain the fully expanded Type -- value (and any type synonyms.) simpleEdges :: Monoid hint => GraphEdges hint TypeGraphVertex -> GraphEdges hint TypeGraphVertex simpleEdges = Map.mapWithKey (\v (n, s) -> (n, Set.delete v s)) . -- delete any self edges Map.mapKeysWith combine simpleVertex . -- simplify each vertex Map.map (over _2 (Set.map simpleVertex)) -- simplify the out edges where combine (n1, s1) (n2, s2) = (n1 <> n2, Set.union s1 s2) simpleVertex :: TypeGraphVertex -> TypeGraphVertex simpleVertex v = v {_field = Nothing}