module Language.Haskell.TH.TypeGraph.Edges
( GraphEdges
, typeGraphEdges
, cut
, cutM
, cutEdges
, cutEdgesM
, isolate
, isolateM
, link
, linkM
, dissolve
, dissolveM
, simpleEdges
) where
#if __GLASGOW_HASKELL__ < 709
import Control.Applicative ((<$>))
import Data.Monoid (mempty)
#endif
import Control.Lens
import Control.Monad (filterM)
import Control.Monad.Reader (MonadReader)
import Control.Monad.State (execStateT, modify, StateT)
import Data.Default (Default(def))
import Data.Foldable
import Data.List as List (filter, intercalate, map)
import Data.Map as Map ((!), alter, delete, filterWithKey, fromList, keys, lookup, map, Map, mapKeysWith, mapWithKey)
import qualified Data.Map as Map (toList)
import Data.Maybe (mapMaybe)
import Data.Monoid ((<>))
import Data.Set as Set (delete, empty, filter, insert, map, member, fromList, Set, singleton, toList, union)
import Language.Haskell.Exts.Syntax ()
import Language.Haskell.TH
import Language.Haskell.TH.PprLib (ptext)
import Language.Haskell.TH.TypeGraph.Expand (E(E), expandType)
import Language.Haskell.TH.TypeGraph.Info (TypeInfo, infoMap, typeSet, allVertices, fieldVertex, typeVertex')
import Language.Haskell.TH.TypeGraph.Prelude (pprint')
import Language.Haskell.TH.TypeGraph.Vertex (simpleVertex, TGV, TGVSimple)
import Language.Haskell.TH.Desugar as DS (DsMonad)
import Language.Haskell.TH.Instances ()
import Prelude hiding (foldr, mapM_, null)
type GraphEdges node key = Map key (node, Set key)
typeGraphEdges :: forall node m. (DsMonad m, Functor m, Default node, MonadReader TypeInfo m) =>
m (GraphEdges node TGV)
typeGraphEdges = do
execStateT (view typeSet >>= mapM_ (\t -> expandType t >>= doType)) mempty
where
doType :: E Type -> StateT (GraphEdges node TGV) m ()
doType typ = do
vs <- allVertices Nothing typ
mapM_ node vs
case typ of
E (ConT tname) -> view infoMap >>= \ mp -> doInfo vs (mp ! tname)
E (AppT typ1 typ2) -> do
v1 <- typeVertex' (E typ1)
v2 <- typeVertex' (E typ2)
mapM_ (flip edge v1) vs
mapM_ (flip edge v2) vs
doType (E typ1)
doType (E typ2)
_ -> return ()
doInfo :: Set TGV -> Info -> StateT (GraphEdges node TGV) m ()
doInfo vs (TyConI dec) = doDec vs dec
doInfo _ _ = return ()
doDec :: Set TGV -> Dec -> StateT (GraphEdges node TGV) m ()
doDec _ (TySynD _ _ _) = return ()
doDec vs (NewtypeD _ tname _ constr _) = doCon vs tname constr
doDec vs (DataD _ tname _ constrs _) = mapM_ (doCon vs tname) constrs
doDec _ _ = return ()
doCon :: Set TGV -> Name -> Con -> StateT (GraphEdges node TGV) m ()
doCon vs tname (ForallC _ _ con) = doCon vs tname con
doCon vs tname (NormalC cname flds) = mapM_ (uncurry (doField vs tname cname)) (List.map (\ (n, (_, ftype)) -> (Left n, ftype)) (zip [1..] flds))
doCon vs tname (RecC cname flds) = mapM_ (uncurry (doField vs tname cname)) (List.map (\ (fname, _, ftype) -> (Right fname, ftype)) flds)
doCon vs tname (InfixC (_, lhs) cname (_, rhs)) = doField vs tname cname (Left 1) lhs >> doField vs tname cname (Left 2) rhs
doField :: DsMonad m => Set TGV -> Name -> Name -> Either Int Name -> Type -> StateT (GraphEdges node TGV) m ()
doField vs tname cname fld ftyp = do
v2 <- expandType ftyp >>= fieldVertex (tname, cname, fld)
v3 <- expandType ftyp >>= typeVertex'
edge v2 v3
mapM_ (flip edge v2) vs
node :: TGV -> StateT (GraphEdges node TGV) m ()
node v = modify (Map.alter (Just . maybe (def, Set.empty) id) v)
edge :: TGV -> TGV -> StateT (GraphEdges node TGV) m ()
edge v1 v2 = node v2 >> modify f
where f :: GraphEdges node TGV -> GraphEdges node TGV
f = Map.alter g v1
g :: (Maybe (node, Set TGV) -> Maybe (node, Set TGV))
g = Just . maybe (def, singleton v2) (over _2 (Set.insert v2))
instance Ppr key => Ppr (GraphEdges node key) where
ppr x =
ptext $ intercalate "\n " $
"edges:" : (List.map
(\(k, (_, ks)) -> intercalate "\n " ((pprint' k ++ " ->" ++ if null ks then " []" else "") : List.map pprint' (Set.toList ks)))
(Map.toList x))
cut :: (Eq a, Ord a) => (a -> Bool) -> GraphEdges node a -> GraphEdges node a
cut p edges = Map.filterWithKey (\v _ -> not (p v)) (isolate p edges)
cutM :: (Functor m, Monad m, Eq a, Ord a) => (a -> m Bool) -> GraphEdges node a -> m (GraphEdges node a)
cutM victim edges = do
victims <- Set.fromList <$> filterM victim (Map.keys edges)
return $ cut (flip Set.member victims) edges
cutEdges :: (Eq a, Ord a) => (a -> a -> Bool) -> GraphEdges node a -> (GraphEdges node a)
cutEdges p edges = Map.mapWithKey (\key (hint, gkeys) -> (hint, Set.filter (\gkey -> not (p key gkey)) gkeys)) edges
cutEdgesM :: (Monad m, Eq a, Ord a) => (a -> a -> m Bool) -> GraphEdges node a -> m (GraphEdges node a)
cutEdgesM p edges = do
let pairs = Map.toList edges
ss <- mapM (\(a, (_, s)) -> filterM (\b -> not <$> p a b) (Set.toList s)) pairs
let pairs' = List.map (\ ((a, (h, _)), s') -> (a, (h, Set.fromList s'))) (zip pairs ss)
return $ Map.fromList pairs'
isolate :: (Eq a, Ord a) => (a -> Bool) -> GraphEdges node a -> GraphEdges node a
isolate p edges = cutEdges (\ a b -> p a || p b) edges
isolateM :: (Functor m, Monad m, Eq a, Ord a) => (a -> m Bool) -> GraphEdges node a -> m (GraphEdges node a)
isolateM victim edges = do
victims <- Set.fromList <$> filterM victim (Map.keys edges)
return $ isolate (flip Set.member victims) edges
link :: (Eq a, Ord a) => (a -> Maybe (Set a)) -> GraphEdges node a -> GraphEdges node a
link f edges =
foldr link1 edges (List.map (\a -> (a, f a)) (Map.keys edges))
where
link1 :: (Eq a, Ord a) => (a, Maybe (Set a)) -> GraphEdges node a -> GraphEdges node a
link1 (_, Nothing) edges' = edges'
link1 (a, Just s) edges' = Map.alter (\(Just (node, _)) -> Just (node, s)) a edges'
linkM :: (Eq a, Ord a, Monad m) => (a -> m (Maybe (Set a))) -> GraphEdges node a -> m (GraphEdges node a)
linkM f edges = do
let ks = Map.keys edges
mss <- mapM f ks
let mp = Map.fromList $ mapMaybe (\(k, ms) -> maybe Nothing (Just .(k,)) ms) $ zip ks mss
return $ link (\k -> Map.lookup k mp) edges
dissolve :: (Eq a, Ord a) => (a -> Bool) -> GraphEdges node a -> GraphEdges node a
dissolve p edges =
foldr dissolve1 edges (List.filter p (Map.keys edges))
where
dissolve1 v es = maybe es (\(_, s) -> dissolve1' v (Set.delete v s) (Map.delete v es)) (Map.lookup v es)
dissolve1' v vs es = Map.map (\(h, s) -> (h, if Set.member v s then Set.union vs (Set.delete v s) else s)) es
dissolveM :: (Functor m, Monad m, Eq a, Ord a) => (a -> m Bool) -> GraphEdges node a -> m (GraphEdges node a)
dissolveM victim edges = do
victims <- Set.fromList <$> filterM victim (Map.keys edges)
return $ dissolve (flip Set.member victims) edges
simpleEdges :: Monoid node => GraphEdges node TGV -> GraphEdges node TGVSimple
simpleEdges = Map.mapWithKey (\v (n, s) -> (n, Set.delete v s)) .
Map.mapKeysWith combine simpleVertex .
Map.map (over _2 (Set.map simpleVertex))
where
combine (n1, s1) (n2, s2) = (n1 <> n2, Set.union s1 s2)