
Tidal: Domain specific language for live coding
of pattern

Homepage and mailing list: http://yaxu.org/tidal/

Tidal is a language for live coding pattern, embedded in the Haskell language.
You don’t really have to learn Haskell to use Tidal, but it might help to pick
up an introduction. You could try Graham Hutton’s “Programming in Haskell”
or Miran Lipovača’s “Learn you a Haskell for Great Good” (which has a free
online version). Or, you could just try learning enough by playing around with
Tidal.

Installation

Linux installation: https://github.com/yaxu/Tidal/blob/master/doc/
install-linux.md

Mac OS X installation: https://github.com/yaxu/Tidal/blob/master/doc/
install-osx.md

Feel free to ask questions and share problems and success stories on the mailing
list.

Sequences

Tidal starts with nine connections to the dirt synthesiser, named from d1 to d9.
Here’s a minimal example, that plays a bass drum every loop:

d1 $ sound "bd"

In the above, sound tells us we’re making a pattern of sounds, and "bd" is a
pattern that contains a single sound. bd is a sample of a bass drum. To run the
code, use Ctrl-C then Ctrl-C.

We can pick variations of a sound by adding a slash then a number, for example
this picks the fourth bass drum (it starts with 0):

d1 $ sound "bd/3"

Putting things in quotes actually defines a sequence. For example, the following
gives you a pattern of bass drum then snare:

d1 $ sound "bd sn"

1

http://yaxu.org/tidal/
https://github.com/yaxu/Tidal/blob/master/doc/install-linux.md
https://github.com/yaxu/Tidal/blob/master/doc/install-linux.md
https://github.com/yaxu/Tidal/blob/master/doc/install-osx.md
https://github.com/yaxu/Tidal/blob/master/doc/install-osx.md

When you do Ctrl-C Ctrl-C on the above, you are replacing the previous pattern
with another one on-the-fly. Congratulations, you’re live coding.

The sound function in the above is just one possible parameter that we can send
to the synth. Below show a couple more, pan and vowel:

d1 $ sound "bd sn sn"
| + | vowel "a o e"
| + | pan "0 0.5 1"

NOTE: Ctrl-C Ctrl-C won’t work on the above, because it goes over more than
one line. Instead, do Ctrl-C Ctrl-E to run the whole block. However, note that
there must be empty lines surrounding the block. The lines must be completely
empty, including of spaces (this can be annoying as you can’t see the spaces).

Note that for pan, when working in stereo, that 0 means hard left, 1 means hard
right, and 0.5 means centre.

When specifying a sequence you can group together several events to play inside
a single event by using square brackets:

d1 $ sound "[bd sn sn] sn"

This is good for creating compound time signatures (sn = snare, cp = clap):

d1 $ sound "[bd sn sn] [cp cp]"

And you put events inside events to create any level of detail:

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

You can also layer up several loops, by using commas to separate the different
parts:

d1 $ sound "[bd ht lt, sn cp]"

This would play the sequence bd bd bd at the same time as sn cp sn cp. Note
that the first sequence only has three events, and the second one has four.
Because tidal ensures both loops fit inside same duration, you end up with a
polyrhythm.

Try replacing the square brackets with curly brackets:

d1 $ sound "{bd ht lt, sn cp}"

2

This is a different way of specifying a polyrhythm. Instead of both parts taking
up the same amount of time, each event within the second part takes up the
same amount of time as the second part. You can embed these different forms
inside each other:

d1 $ sound "{bd [ht sn, lt mt ht] lt, sn cp}"

You can make parts of patterns repeat by using ∗, for example the following
example produces the same pattern as the previous one:

d1 $ sound "[bd∗3, [sn cp]∗2]"

Conversely, you can slow down patterns by using /, the following pattern plays
part of each subpattern each cycle:

d1 $ sound "[bd sn sn∗3]/2 [bd sn∗3 bd∗4]/3"

Peace and quiet with silence and hush

An empty pattern is defined as silence, so if you want to ‘switch off’ a pattern,
you can just set it to that:

d1 silence

If you want to set all the connections (from d1 to d9) to silence at once, there’s
a single-word shortcut for that:

hush

Beats per second

You can change the beats per second (bps) like this:

bps 1

If you prefer to think in beats per minute, simply divide by 60

bps (140 / 60)

3

Samples

All the samples can be found in the samples subfolder of the Dirt distribution.
Here’s some you could try:

flick sid can metal future gabba sn mouth co gretsch mt arp h cp
cr newnotes bass crow hc tabla bass0 hh bass1 bass2 oc bass3 ho
odx diphone2 house off ht tink perc bd industrial pluck trump
printshort jazz voodoo birds3 procshort blip drum jvbass psr
wobble drumtraks koy rave bottle kurt latibro rm sax lighter lt

Each one is a folder containing one or more wav files. For example when you
put bd/1 in a sequence, you’re picking up the second wav file in the bd folder.
If you ask for the ninth sample and there are only seven in the folder, it’ll wrap
around and play the second one.

If you want to add your own samples, just create a new folder in the samples
director, and put wav files in it.

Continuous patterns

As well as making patterns as sequences, we can also use continuous patterns.
This makes particular sense for parameters such as pan (for panning sounds
between speakers) and shape (for adding distortion) which are patterns of num-
bers.

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"
| + | pan sinewave1
| + | shape sinewave1

The above uses the pattern sinewave1 to continuously pan between the left and
right speaker. You could also try out triwave1 and squarewave1. The functions
sinewave, triwave and squarewave also exist, but they go between -1 and 1,
which is often not what you want.

Transforming patterns

Tidal comes into its own when you start building things up with functions which
transform the patterns in various ways.

For example, rev reverses a pattern:

d1 $ rev (sound "[bd bd] [bd [sn [sn sn] sn] sn]")

4

That’s not so exciting, but things get more interesting when this is used in com-
bination another function. For example every takes two parameters, a number,
a function and a pattern to apply the function to. The number specifies how
often the function is applied to the pattern. For example, the following reverses
the pattern every fourth repetition:

d1 $ every 4 (rev) (sound "bd∗2 [bd [sn sn∗2 sn] sn]")

You can also slow down or speed up the playback of a pattern, this makes it a
quarter of the speed:

d1 $ slow 4 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

And this four times the speed:

d1 $ density 4 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

Note that slow 0.25 would do exactly the same as density 4.

Again, this can be applied selectively:

d1 $ every 4 (density 4) $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

Note the use of parenthesis around (density 4), this is needed, to group together
the function density with its parameter 4, before being passed as a parameter
to the function every.

Instead of putting transformations up front, separated by the pattern by the $
symbol, you can put them inside the pattern, for example:

d1 $ sound (every 4 (density 4) "bd∗2 [bd [sn sn∗2 sn] sn]")
| + | pan sinewave1

In the above example the transformation is applied inside the sound parameter
to d1, and therefore has no effect on the pan parameter. Again, parenthesis is
required to both group together (density 4) before passing as a parameter to
every, and also around every and its parameters before passing to its function
sound.

d1 $ sound (every 4 (density 4) "bd∗2 [bd [sn sn∗2 sn] sn]")
| + | pan (slow 16 sinewave1)

In the above, the sinewave pan has been slowed down, so that the transition
between speakers happens over 16 loops.

5

Mapping over patterns

Sometimes you want to transform all the events inside a pattern, and not the
time structure of the pattern itself. For example, if you wanted to pass a
sinewave to shape, but wanted the sinewave to go from 0 to 0.5 rather than
from 0 to 1, you could do this:

d1 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"))
| + | shape ((/ 2) <$> sinewave1)

The above applies the function (/ 2) (which simply means divide by two), to all
the values inside the sinewave1 pattern.

Parameters

These are the synthesis parameters you can use

• sound - a pattern of strings representing sound sample names (required)

• pan - a pattern of numbers between 0 and 1, from left to right (assuming
stereo)

• shape - wave shaping distortion, a pattern of numbers from 0 for no dis-
tortion up to 1 for loads of distortion

• vowel - formant filter to make things sound like vowels, a pattern of either
a, e, i, o or u. Use a rest (∼) for no effect.

• cutoff - a pattern of numbers from 0 to 1

• resonance - a pattern of numbers from 0 to 1

• speed - a pattern of numbers from 0 to 1, which changes the speed of
sample playback, i.e. a cheap way of changing pitch

Pattern transformers

In the following, functions are shown with their Haskell type and a short de-
scription of how they work.

6

brak

brak :: Pattern a → Pattern a

(The above means that brak is a function from patterns of any type, to a pattern
of the same type.)

Make a pattern sound a bit like a breakbeat

Example:

d1 $ sound (brak "bd sn kurt")

Reversal

rev :: Pattern a → Pattern a

Reverse a pattern

Examples:

d1 $ every 3 (rev) $ sound (density 2 "bd sn kurt")

Beat rotation

(<∼) :: Time → Pattern a → Pattern a

or

(∼>) :: Time → Pattern a → Pattern a

(The above means that <∼ and ∼> are functions that are given a time value
and a pattern of any type, and returns a pattern of the same type.)

Rotate a loop either to the left or the right.

Example:

d1 $ every 4 (0.25 <∼) $ sound (density 2 "bd sn kurt")

7

Increase or decrease density

density :: Time → Pattern a → Pattern a

or

slow :: Time → Pattern a → Pattern a

Speed up or slow down a pattern.

Example:

d1 $ sound (density 2 "bd sn kurt")
| + | slow 3 (vowel "a e o")

Every nth repetition, do this

every :: Int → (Pattern a → Pattern a) → Pattern a →
Pattern a

(The above means every is a function that is given an integer number, a function
which transforms a pattern, and an actual pattern, and returns a pattern of the
same type.)

Transform the given pattern using the given function, but only every given
number of repetitions.

Example:

d1 $ sound (every 3 (density 2) "bd sn kurt")

whenmod :: Int → Int → (Pattern a → Pattern a) → Pattern a →
Pattern a

(The above has a similar form to every, but requires an additional number.)

Similar to every, but applies the function to the pattern, when the remainder of
the current loop number divided by the first parameter, is less than the second
parameter.

For example the following makes every other block of four loops twice as dense:

d1 $ whenmod 8 4 (density 2) (sound "bd sn kurt")

8

Interlace

interlace :: OscPattern → OscPattern → OscPattern

(A function that takes two OscPatterns, and blends them together into a new
OscPattern. An OscPattern is basically a pattern of messages to a synthesiser.)

Shifts between the two given patterns, using distortion.

Example:

d1 $ interlace (sound "bd sn kurt") (every 3 rev $ sound
"bd sn/2")

Spread

spread :: (a → t → Pattern b) → [a] → t → Pattern b

(The above is difficult to describe, if you don’t understand Haskell, just read
the description and examples..)

The spread function allows you to take a pattern transformation which takes
a parameter, such as slow, and provide several parameters which are switched
between. In other words it ‘spreads’ a function across several values.

Taking a simple high hat loop as an example:

d1 $ sound "ho ho/2 ho/3 hc"

We can slow it down by different amounts, such as by a half:

d1 $ slow 2 $ sound "ho ho/2 ho/3 hc"

Or by four thirds (i.e. speeding it up by a third; 4%3 means four over three):

d1 $ slow (4%3) $ sound "ho ho/2 ho/3 hc"

But if we use spread, we can make a pattern which alternates between the two
speeds:

d1 $ spread slow [2,4%3] $ sound "ho ho/2 ho/3 hc"

9

There’s a version of this function, spread' (pronounced “spread prime”), which
takes a pattern of parameters, instead of a list:

d1 $ spread ' slow "2 4%3" $ sound "ho ho/2 ho/3 hc"

This is quite a messy area of Tidal - due to a slight difference of implementation
this sounds completely different! One advantage of using spread' though is that
you can provide polyphonic parameters, e.g.:

d1 $ spread ' slow "[2 4%3, 3]" $ sound "ho ho/2 ho/3 hc"

Striate

striate :: Int → OscPattern → OscPattern

Striate is a kind of granulator, for example:

d1 $ striate 3 $ sound "ho ho/2 ho/3 hc"

This plays the loop the given number of times, but triggering progressive por-
tions of each sample. So in this case it plays the loop three times, the first time
playing the first third of each sample, then the second time playing the second
third of each sample, etc.. With the highhat samples in the above example it
sounds a bit like reverb, but it isn’t really.

You can also use striate with very long samples, to cut it into short chunks and
pattern those chunks. This is where things get towards granular synthesis. The
following cuts a sample into 128 parts, plays it over 8 cycles and manipulates
those parts by reversing and rotating the loops.

d1 $ slow 8 $ striate 128 $ sound "bev"

The striate' function is a variant of striate with an extra parameter, which
specifies the length of each part. The striate' function still scans across the
sample over a single cycle, but if each bit is longer, it creates a sort of stuttering
effect. For example the following will cut the bev sample into 32 parts, but each
will be 1/16th of a sample long:

d1 $ slow 32 $ striate ' 32 (1/16) $ sound "bev"

10

Smash

smash :: Int → [Time] → OscPattern → OscPattern

Smash is a combination of spread and striate - it cuts the samples into the
given number of bits, and then cuts between playing the loop at different speeds
according to the values in the list.

So this:

d1 $ smash 3 [2,3,4] $ sound "ho ho/2 ho/3 hc"

Is a bit like this:

d1 $ spread (slow) [2,3,4] $ striate 3 $ sound "ho ho/2 ho/3 hc"

This is quite dancehall:

d1 $ (spread ' slow "1%4 2 1 3" $ spread (striate) [2,3,4,1] $ sound
"sn/2 sid/3 cp sid/4")

| + | speed "[1 2 1 1]/2"

Combining patterns

Because Tidal patterns are defined as something called an “applicative functor”,
it’s easy to combine them. For example, if you have two patterns of numbers,
you can combine the patterns by, for example, multiplying the numbers inside
them together, like this:

d1 $ (brak (sound "bd sn/2 bd sn"))
| + | pan ((∗) <$> sinewave1 <∗> (slow 8 $ "0 0.25 0.75"))

In the above, the sinewave1 and the (slow 8 $ "0 0.25 0.75") pattern are mul-
tiplied together. Using the <$> and the <*> in this way turns the ∗ operator,
which normally works with two numbers, into a function that instead works on
two patterns of numbers.

Here’s another example of this technique:

d1 $ sound (pick <$> "kurt mouth can∗3 sn" <∗> slow 7 "0 1 2 3 4")

The pick function normally just takes the name of a set of samples (such as
kurt), and a number, and returns a sample with that number. Again, using

11

<$> and <*> turns pick into a function that operates on patterns, rather
than simple values. In practice, this means you can pattern sample numbers
separately from sample sets. Because the sample numbers have been slowed
down in the above, an interesting texture results.

By the way, “0 1 2 3 4” in the above could be replaced with the pattern generator
run 5.

Juxtapositions

The jux function creates strange stereo effects, by applying a function to a
pattern, but only in the right-hand channel. For example, the following reverses
the pattern on the righthand side:

d1 $ slow 32 $ jux (rev) $ striate ' 32 (1/16) $ sound "bev"

When passing pattern transforms to functions like jux and every, it’s possible
to chain multiple transforms together with ., for example this both reverses and
halves the playback speed of the pattern in the righthand channel:

d1 $ slow 32 $ jux ((| + | speed "0.5") ◦ rev) $ striate ' 32 (1/16) $ sound "bev"

Plus more to be discovered!

You can find a stream of minimal cycles written in Tidal in the following twitter
feed: http://twitter.com/tidalcycles/

Acknowledgments

Special thanks to l’ull cec (http://lullcec.org) and hangar (http://hangar.
org) for supporting the documentation and release of tidal as part of the AD-
DICTED2RANDOM project.

12

http://twitter.com/tidalcycles/
http://lullcec.org
http://hangar.org
http://hangar.org

