
Tidal – Domain specific language for live coding of paern

Homepage and mailing list: http://yaxu.org/tidal/

Tidal is a language for live coding paern, embedded in the Haskell language. You don’t really have to
learn Haskell to use Tidal, but it might help to pick up an introduction. You could try Graham Huon’s
“Programming in Haskell” or Miran Lipovača’s “Learn you a Haskell for Great Good” (which has a free
online version). Or, you could just try learning enough by playing around with Tidal.

Installation

Tidal is developed under Linux, and although some have got it to work under Macs, the process hasn’t
been fully documented, and Dirt synthesiser has not yet been ported to Windows. Feel free to ask
questions and share problems and success stories on the mailing list.

Installing Dirt

Tidal does not include a synthesiser, but instead communicates with an external synthesiser using the
Open Sound Control protocol. It has been developed for use with a particular soware sampler called
“dirt”. You’ll need to run it with “jack audio”. Here’s an example of the commands needed to compile it
under a debian-derived linux distribution (including ubuntu and mint):

sudo apt-get install build -essential libsndfile1 -dev libsamplerate0 -dev λ
liblo -dev libjack -jackd2 -dev qjackctl jackd git

git clone https://github.com/yaxu/Dirt.git
cd Dirt
make clean; make

en you’ll have to start jack, using the ‘qjackctl’ app under Linux, or otherwise from the commandline:

jackd -d alsa &

(On MacOS X, you would do this instead: jackd -d coreaudio &)

If that doesn’t work, you might well have something called “pulseaudio” in control of your sound. In
that case, this should work:

/usr/bin/pasuspender -- jackd -d alsa &

And finally you should be able to start dirt with this:

1

http://yaxu.org/tidal/

./dirt &

If you have problems with jack, try enabling realtime audio, and adjusting the seings by installing
and using the “qjackctl” soware. Some more info is here: https://help.ubuntu.com/community/
HowToJACKConfiguration

Tidal

Tidal is embedded in the Haskell language, so you’ll have to install the haskell interpreter and some
libraries, including tidal itself. Under debian, you’d install haskell like this:

sudo apt-get install ghc6 cabal-install

Or otherwise you could grab it from http://www.haskell.org/platform/

Once Haskell is installed, you can install tidal like this: cabal update cabal install tidal

Emacs

Currently about the only interface to Tidal is the emacs editor. Debian users can install emacs, along
with its haskell front-end, this way:

sudo apt-get install emacs24 haskell -mode

To install the emacs interface to tidal, you’ll need to edit a configuration file in your home folder called
.emacs. If it doesn’t exist, create it. en, add the following, replacing ∼/projects/tidal with the
location of the tidal.el file.

(add-to-list 'load-path " ∼ /projects/tidal")
(require 'tidal)

If tidal.el did not come with this document, you can grab it here: https://raw.github.com/yaxu/
Tidal/master/tidal.el

Testing, testing…

Now start emacs, and open a new file called something like “helloworld.tidal”. Once the file is opened,
you still have to start tidal, you do that by typing Ctrl-C then Ctrl-S.

All being well you should now be able to start making some sounds, lets start with some simple se-
quences.

Sequences

Tidal starts with nine connections to the dirt synthesiser, named from d1 to d9. Here’s a minimal ex-
ample, that plays a bass drum every loop:

2

https://help.ubuntu.com/community/HowToJACKConfiguration
https://help.ubuntu.com/community/HowToJACKConfiguration
http://www.haskell.org/platform/
https://raw.github.com/yaxu/Tidal/master/tidal.el
https://raw.github.com/yaxu/Tidal/master/tidal.el

d1 $ sound "bd"

In the above, sound tells us we’re making a paern of sounds, and "bd" is a paern that contains a single
sound. bd is a sample of a bass drum. To run the code, use Ctrl-C then Ctrl-C.

We can pick variations of a sound by adding a slash then a number, for example this picks the fourth
bass drum (it starts with 0):

d1 $ sound "bd/3"

Puing things in quotes actually defines a sequence. For example, the following gives you a paern of
bass drum then snare:

d1 $ sound "bd sn"

When you do Ctrl-C Ctrl-C on the above, you are replacing the previous paern with another one
on-the-fly. Congratulations, you’re live coding.

e sound function in the above is just one possible parameter that we can send to the synth. Below
show a couple more, pan and vowel:

d1 $ sound "bd sn sn"
| + | vowel "a o e"
| + | pan "0 0.5 1"

NOTE: Ctrl-C Ctrl-C won’t work on the above, because it goes over more than one line. Instead, do
Ctrl-C Ctrl-E to run the whole block. However, note that there must be empty lines surrounding the
block. e lines must be completely empty, including of spaces (this can be annoying as you can’t see
the spaces).

Note that for pan, when working in stereo, that 0 means hard le, 1 means hard right, and 0.5 means
centre.

When specifying a sequence you can group together several events to play inside a single event by using
square brackets:

d1 $ sound "[bd sn sn] sn"

is is good for creating compound time signatures (sn = snare, cp = clap):

d1 $ sound "[bd sn sn] [cp cp]"

And you put events inside events to create any level of detail:

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"

You can also layer up several loops, by using commas to separate the different parts:

d1 $ sound "[bd bd bd, sn cp sn cp]"

3

is would play the sequence bd bd bd at the same time as sn cp sn cp. Note that the first sequence
only has three events, and the second one has four. Because tidal ensures both loops fit inside same
duration, you end up with a polyrhythm.

You can make parts of paerns repeat by using ∗, for example the following example produces the same
paern as the previous one:

d1 $ sound "[bd∗3, [sn cp]∗2]"

Conversely, you can slow down paerns by using /, the following paern plays part of each subpaern
each cycle:

d1 $ sound "[bd sn sn∗3]/2 [bd sn∗3 bd∗4]/3"

Samples

All the samples can be found in the samples subfolder of the Dirt distribution. Here’s some you could
try:

flick sid can metal future gabba sn mouth co gretsch mt arp h cp
cr newnotes bass crow hc tabla bass0 hh bass1 bass2 oc bass3 ho
odx diphone2 house off ht tink perc bd industrial pluck trump
printshort jazz voodoo birds3 procshort blip drum jvbass psr
wobble drumtraks koy rave bottle kurt latibro rm sax lighter lt

Each one is a folder containing one or more wav files. For example when you put bd/1 in a sequence,
you’re picking up the second wav file in the bd folder. If you ask for the ninth sample and there are only
seven in the folder, it’ll wrap around and play the second one.

If you want to add your own samples, just create a new folder in the samples director, and put wav files
in it.

Continuous patterns

As well as making paerns as sequences, we can also use continuous paerns. is makes particular
sense for parameters such as pan (for panning sounds between speakers) and shape (for adding distor-
tion) which are paerns of numbers.

d1 $ sound "[bd bd] [bd [sn [sn sn] sn] sn]"
| + | pan sinewave1
| + | shape sinewave1

e above uses the paern sinewave1 to continuously pan between the le and right speaker. You could
also try out triwave1 and squarewave1. e functions sinewave, triwave and squarewave also exist, but
they go between -1 and 1, which is oen not what you want.

4

Transforming patterns

Tidal comes into its own when you start building things up with functions which transform the paerns
in various ways.

For example, rev reverses a paern:

d1 $ rev (sound "[bd bd] [bd [sn [sn sn] sn] sn]")

at’s not so exciting, but things get more interestingwhen this is used in combination another function.
For example every takes two parameters, a number, a function and a paern to apply the function to. e
number specifies how oen the function is applied to the paern. For example, the following reverses
the paern every fourth repetition:

d1 $ every 4 (rev) (sound "bd∗2 [bd [sn sn∗2 sn] sn]")

You can also slow down or speed up the playback of a paern, this makes it a quarter of the speed:

d1 $ slow 4 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

And this four times the speed:

d1 $ density 4 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

Note that slow 0.25 would do exactly the same as density 4.

Again, this can be applied selectively:

d1 $ every 4 (density 4) $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"

Note the use of parenthesis around (density 4), this is needed, to group together the function density
with its parameter 4, before being passed as a parameter to the function every.

Instead of puing transformations up front, separated by the paern by the $ symbol, you can put them
inside the paern, for example:

d1 $ sound (every 4 (density 4) "bd∗2 [bd [sn sn∗2 sn] sn]")
| + | pan sinewave1

In the above example the transformation is applied inside the sound parameter to d1, and therefore
has no effect on the pan parameter. Again, parenthesis is required to both group together (density 4)
before passing as a parameter to every, and also around every and its parameters before passing to its
function sound.

d1 $ sound (every 4 (density 4) "bd∗2 [bd [sn sn∗2 sn] sn]")
| + | pan (slow 16 sinewave1)

In the above, the sinewave pan has been slowed down, so that the transition between speakers happens
over 16 loops.

5

Mapping over patterns

Sometimes you want to transform all the events inside a paern, and not the time structure of the
paern itself. For example, if you wanted to pass a sinewave to shape, but wanted the sinewave to go
from 0 to 0.5 rather than from 0 to 1, you could do this:

d1 $ sound "bd∗2 [bd [sn sn∗2 sn] sn]"))
| + | shape ((/ 2) <$> sinewave1)

e above applies the function (/ 2) (which simply means divide by two), to all the values inside the
sinewave1 paern.

Parameters

ese are the synthesis parameters you can use

• sound - a paern of strings representing sound sample names (required)

• pan - a paern of numbers between 0 and 1, from le to right (assuming stereo)

• shape - wave shaping distortion, a paern of numbers from 0 for no distortion up to 1 for loads
of distortion

• vowel - formant filter to make things sound like vowels, a paern of either a, e, i, o or u. Use a
rest (∼) for no effect.

• cutoff - a paern of numbers from 0 to 1

• resonance - a paern of numbers from 0 to 1

• speed - a paern of numbers from 0 to 1, which changes the speed of sample playback, i.e. a cheap
way of changing pitch

Pattern transformers

brak

brak <pattern>

Make a paern sound a bit like a breakbeat

Example:

d1 $ sound (brak "bd sn kurt")

6

Beat rotation

<number><∼<pattern>

or

<number>∼><pattern>

Rotate a loop either to the le or the right.

Example:

d1 $ every 4 (0.25 <∼) $ sound (density 2 "bd sn kurt")

Reversal

rev <pattern>

Reverse a paern

Examples:

d1 $ every 3 (rev) $ sound (density 2 "bd sn kurt")

Increase/decrease density

density <number><pattern>

or

slow <number><pattern>

Speed up or slow down a paern.

Example:

d1 $ sound (density 2 "bd sn kurt")
| + | slow 3 (vowel "a e o")

Every nth repetition, do this

every <number><function><pattern>

Applies to , but only every repetitions.

Example:

d1 $ sound (every 3 (density 2) "bd sn kurt")

7

Interlace

interlace <pattern><pattern>

Shis between two paerns, using distortion.

Example:

d1 $ interlace (sound "bd sn kurt") (every 3 rev $ sound "bd sn/2")

Plus more to be discovered!

You can find a stream ofminimal cycleswrien in Tidal in the following twier feed: http://twitter.
com/tidalcycles/

Anowledgments

Special thanks to l’ull cec (http://lullcec.org) and hangar (http://hangar.org) for supporting
the documentation and release of tidal as part of the ADDICTED2RANDOM project.

8

http://twitter.com/tidalcycles/
http://twitter.com/tidalcycles/
http://lullcec.org
http://hangar.org

	Installation
	Installing Dirt
	Tidal
	Emacs
	Testing, testing…

	Sequences
	Samples
	Continuous patterns
	Transforming patterns
	Mapping over patterns
	Parameters
	Pattern transformers
	brak
	Beat rotation
	Reversal
	Increase/decrease density
	Every nth repetition, do this

	Interlace
	Acknowledgments

