-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Directed acyclic graphs. -- -- Directed acyclic graphs can be sorted topographically. Existence of -- topographic ordering allows writing many graph algorithms efficiently. -- And many graphs, e.g. most dependency graphs are acyclic! -- -- There are some algorithms build-in: dfs, transpose, transitive -- closure, transitive reduction... Some algorithms even become -- not-so-hard to implement, like a longest path! @package topograph @version 1 -- | Tools to work with Directed Acyclic Graphs, by taking advantage of -- topological sorting. module Topograph -- | Graph representation. -- -- The runG creates a G v i structure. Note, that -- i is kept free, so you cannot construct i which -- isn't in the gVertices. Therefore operations, like -- gFromVertex are total (and fast). -- --
-- gVerticeCount g = length (gVertices g) ---- --
-- >>> runG example $ \G {..} -> (length gVertices, gVerticeCount)
-- Right (5,5)
--
--
-- -- Just (gVertexIndex g x) = elemIndex x (gVertices g) ---- --
-- >>> runG example $ \G {..} -> map (`elemIndex` gVertices) gVertices
-- Right [Just 0,Just 1,Just 2,Just 3,Just 4]
--
--
--
-- >>> runG example $ \G {..} -> map gVertexIndex gVertices
-- Right [0,1,2,3,4]
--
data G v i
G :: [i] -> (i -> v) -> (v -> Maybe i) -> (i -> [i]) -> (i -> i -> Int) -> Int -> (i -> Int) -> G v i
-- | all vertices, in topological order.
[gVertices] :: G v i -> [i]
-- | O(1). retrieve original vertex data
[gFromVertex] :: G v i -> i -> v
-- | O(log n).
[gToVertex] :: G v i -> v -> Maybe i
-- | O(1). Outgoing edges. Note: target indices are larger than
-- source index.
[gEdges] :: G v i -> i -> [i]
-- | O(1). Upper bound of the path length. Negative means there
-- aren't path.
[gDiff] :: G v i -> i -> i -> Int
-- | O(1). gVerticeCount g = length
-- (gVertices g)
[gVerticeCount] :: G v i -> Int
-- | O(1). Just (verticeIndex g x) =
-- elemIndex x (gVertices g). Note, there are no
-- efficient way to convert Int into i, convertion back
-- and forth is discouraged on purpose.
[gVertexIndex] :: G v i -> i -> Int
-- | Run action on topologically sorted representation of the graph.
--
--
-- >>> runG example $ \G {..} -> map gFromVertex gVertices
-- Right "axbde"
--
--
-- Vertices are sorted
--
--
-- >>> runG example $ \G {..} -> map gFromVertex $ sort gVertices
-- Right "axbde"
--
--
--
-- >>> runG example $ \G {..} -> map (map gFromVertex . gEdges) gVertices
-- Right ["xbde","de","d","e",""]
--
--
-- Note: target indices are always larger than source vertex' index:
--
--
-- >>> runG example $ \G {..} -> getAll $ foldMap (\a -> foldMap (\b -> All (a < b)) (gEdges a)) gVertices
-- Right True
--
--
--
-- >>> let loop = M.map S.fromList $ M.fromList [('a', "bx"), ('b', "cx"), ('c', "ax"), ('x', "")]
--
-- >>> runG loop $ \G {..} -> map gFromVertex gVertices
-- Left "abc"
--
--
--
-- >>> runG (M.singleton 'a' (S.singleton 'a')) $ \G {..} -> map gFromVertex gVertices
-- Left "aa"
--
runG :: forall v r. Ord v => Map v (Set v) -> (forall i. Ord i => G v i -> r) -> Either [v] r
-- | Like runG but returns Maybe
runG' :: forall v r. Ord v => Map v (Set v) -> (forall i. Ord i => G v i -> r) -> Maybe r
-- | Graph with all edges reversed.
--
--
--
-- >>> runG example $ adjacencyList . transpose
-- Right [('a',""),('b',"a"),('d',"abx"),('e',"adx"),('x',"a")]
--
--
--
-- >>> runG example $ adjacencyList . closure . transpose
-- Right [('a',""),('b',"a"),('d',"abx"),('e',"abdx"),('x',"a")]
--
--
--
-- >>> runG example $ adjacencyList . transpose . closure
-- Right [('a',""),('b',"a"),('d',"abx"),('e',"abdx"),('x',"a")]
--
--
-- Commutes with reduction
--
--
-- >>> runG example $ adjacencyList . reduction . transpose
-- Right [('a',""),('b',"a"),('d',"bx"),('e',"d"),('x',"a")]
--
--
--
-- >>> runG example $ adjacencyList . transpose . reduction
-- Right [('a',""),('b',"a"),('d',"bx"),('e',"d"),('x',"a")]
--
transpose :: forall v i. Ord i => G v i -> G v (Down i)
-- | Transitive reduction.
--
-- Smallest graph, such that if there is a path from u to v
-- in the original graph, then there is also such a path in the
-- reduction.
--
-- The green edges are not in the transitive reduction:
--
--
--
-- >>> runG example $ \g -> adjacencyList $ reduction g
-- Right [('a',"bx"),('b',"d"),('d',"e"),('e',""),('x',"d")]
--
--
-- Taking closure first doesn't matter:
--
--
-- >>> runG example $ \g -> adjacencyList $ reduction $ closure g
-- Right [('a',"bx"),('b',"d"),('d',"e"),('e',""),('x',"d")]
--
reduction :: Ord i => G v i -> G v i
-- | Transitive closure.
--
-- A graph, such that if there is a path from u to v in the
-- original graph, then there is an edge from u to v in the
-- closure.
--
-- The purple edge is added in a closure:
--
--
--
-- >>> runG example $ \g -> adjacencyList $ closure g
-- Right [('a',"bdex"),('b',"de"),('d',"e"),('e',""),('x',"de")]
--
--
-- Taking reduction first, doesn't matter:
--
--
-- >>> runG example $ \g -> adjacencyList $ closure $ reduction g
-- Right [('a',"bdex"),('b',"de"),('d',"e"),('e',""),('x',"de")]
--
closure :: Ord i => G v i -> G v i
-- | Depth-first paths starting at a vertex.
--
--
-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ dfs g <$> gToVertex 'x'
-- Right (Just ["xde","xe"])
--
dfs :: forall v i. Ord i => G v i -> i -> [[i]]
-- | like dfs but returns a Tree.
--
--
-- >>> traverse2_ dispTree $ runG example $ \g@G{..} -> fmap2 gFromVertex $ dfsTree g <$> gToVertex 'x'
-- 'x'
-- 'd'
-- 'e'
-- 'e'
--
dfsTree :: forall v i. Ord i => G v i -> i -> Tree i
-- | All paths from a to b. Note that every path has at
-- least 2 elements, start and end. Use allPaths' for the
-- intermediate steps only.
--
-- See dfs, which returns all paths starting at some vertice. This
-- function returns paths with specified start and end vertices.
--
--
-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'e'
-- Right (Just ["axde","axe","abde","ade","ae"])
--
--
-- There are no paths from element to itself:
--
--
-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'a'
-- Right (Just [])
--
allPaths :: forall v i. Ord i => G v i -> i -> i -> [[i]]
-- | allPaths without begin and end elements.
--
--
-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths' g <$> gToVertex 'a' <*> gToVertex 'e' <*> pure []
-- Right (Just ["xd","x","bd","d",""])
--
allPaths' :: forall v i. Ord i => G v i -> i -> i -> [i] -> [[i]]
-- | Like allPaths but return a Tree. All paths from
-- a to b. Note that every path has at least 2
-- elements, start and end,
--
-- Unfortunately, this is the same as dfs g <$>
-- gToVertex 'a', as in our example graph, all paths from
-- 'a' end up in 'e'.
--
--
--
-- >>> let t = runG example $ \g@G{..} -> fmap3 gFromVertex $ allPathsTree g <$> gToVertex 'a' <*> gToVertex 'e'
--
-- >>> fmap3 (T.foldTree $ \a bs -> if null bs then [[a]] else concatMap (map (a:)) bs) t
-- Right (Just (Just ["axde","axe","abde","ade","ae"]))
--
--
--
-- >>> fmap3 (S.fromList . treePairs) t
-- Right (Just (Just (fromList [('a','b'),('a','d'),('a','e'),('a','x'),('b','d'),('d','e'),('x','d'),('x','e')])))
--
--
--
-- >>> let ls = runG example $ \g@G{..} -> fmap3 gFromVertex $ allPaths g <$> gToVertex 'a' <*> gToVertex 'e'
--
-- >>> fmap2 (S.fromList . concatMap pairs) ls
-- Right (Just (fromList [('a','b'),('a','d'),('a','e'),('a','x'),('b','d'),('d','e'),('x','d'),('x','e')]))
--
--
-- Tree paths show how one can explore the paths.
--
-- -- >>> traverse3_ dispTree t -- 'a' -- 'x' -- 'd' -- 'e' -- 'e' -- 'b' -- 'd' -- 'e' -- 'd' -- 'e' -- 'e' ---- --
-- >>> traverse3_ (putStrLn . T.drawTree . fmap show) t -- 'a' -- | -- +- 'x' -- | | -- | +- 'd' -- | | | -- | | `- 'e' -- | | -- | `- 'e' -- ... ---- -- There are no paths from element to itself, but we'll return a single -- root node, as Tree cannot be empty. -- --
-- >>> runG example $ \g@G{..} -> fmap3 gFromVertex $ allPathsTree g <$> gToVertex 'a' <*> gToVertex 'a'
-- Right (Just (Just (Node {rootLabel = 'a', subForest = []})))
--
allPathsTree :: forall v i. Ord i => G v i -> i -> i -> Maybe (Tree i)
-- | Shortest paths lengths starting from a vertex. The resulting list is
-- of the same length as gVertices. It's quite efficient to
-- compute all shortest (or longest) paths' lengths at once. Zero means
-- that there are no path.
--
--
-- >>> runG example $ \g@G{..} -> shortestPathLengths g <$> gToVertex 'a'
-- Right (Just [0,1,1,1,1])
--
--
--
-- >>> runG example $ \g@G{..} -> shortestPathLengths g <$> gToVertex 'b'
-- Right (Just [0,0,0,1,2])
--
shortestPathLengths :: Ord i => G v i -> i -> [Int]
-- | Longest paths lengths starting from a vertex. The resulting list is of
-- the same length as gVertices.
--
--
-- >>> runG example $ \g@G{..} -> longestPathLengths g <$> gToVertex 'a'
-- Right (Just [0,1,1,2,3])
--
--
--
-- >>> runG example $ \G {..} -> map gFromVertex gVertices
-- Right "axbde"
--
--
--
-- >>> runG example $ \g@G{..} -> longestPathLengths g <$> gToVertex 'b'
-- Right (Just [0,0,0,1,2])
--
longestPathLengths :: Ord i => G v i -> i -> [Int]
-- | Edges set.
--
--
-- >>> runG example $ \g@G{..} -> map (\(a,b) -> [gFromVertex a, gFromVertex b]) $ S.toList $ edgesSet g
-- Right ["ax","ab","ad","ae","xd","xe","bd","de"]
--
edgesSet :: Ord i => G v i -> Set (i, i)
-- | Recover adjacency map representation from the G.
--
--
-- >>> runG example adjacencyMap
-- Right (fromList [('a',fromList "bdex"),('b',fromList "d"),('d',fromList "e"),('e',fromList ""),('x',fromList "de")])
--
adjacencyMap :: Ord v => G v i -> Map v (Set v)
-- | Adjacency list representation of G.
--
--
-- >>> runG example adjacencyList
-- Right [('a',"bdex"),('b',"d"),('d',"e"),('e',""),('x',"de")]
--
adjacencyList :: Ord v => G v i -> [(v, [v])]
-- | Consequtive pairs.
--
-- -- >>> pairs [1..10] -- [(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)] ---- --
-- >>> pairs [] -- [] --pairs :: [a] -> [(a, a)] -- | Like pairs but for Tree. treePairs :: Tree a -> [(a, a)]