-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Data Type for Rewriting Systems -- -- The package defines data types and parsers for rewriting systems and -- termination proofs, as used in the Termination Competitions. For -- syntax and semantics specification, see -- http://www.termination-portal.org/wiki/TPDB @package tpdb @version 1.5.2 module TPDB.Data.Rule data Relation Strict :: Relation Weak :: Relation Equal :: Relation data Rule a Rule :: a -> a -> Relation -> Bool -> Rule a [lhs] :: Rule a -> a [rhs] :: Rule a -> a [relation] :: Rule a -> Relation [top] :: Rule a -> Bool strict :: Rule a -> Bool weak :: Rule a -> Bool equal :: Rule a -> Bool instance GHC.Classes.Ord a => GHC.Classes.Ord (TPDB.Data.Rule.Rule a) instance GHC.Classes.Eq a => GHC.Classes.Eq (TPDB.Data.Rule.Rule a) instance GHC.Show.Show TPDB.Data.Rule.Relation instance GHC.Classes.Ord TPDB.Data.Rule.Relation instance GHC.Classes.Eq TPDB.Data.Rule.Relation instance GHC.Base.Functor TPDB.Data.Rule.Rule module TPDB.Data.Term data Term v s Var :: v -> Term v s Node :: s -> [Term v s] -> Term v s vmap :: (v -> u) -> Term v s -> Term u s type Position = [Int] positions :: Term v c -> [(Position, Term v c)] size :: Term v c -> Int depth :: Term v c -> Int -- | all positions pos :: Term v c -> [Position] -- | non-variable positions sympos :: Term v c -> [Position] -- | variable positions varpos :: Term v c -> [Position] -- | leaf positions (= nullary symbols) leafpos :: Term v c -> [Position] subterms :: Term v c -> [Term v c] strict_subterms :: () => Term v c -> [Term v c] isSubtermOf :: (Eq v, Eq c) => Term v c -> Term v c -> Bool isStrictSubtermOf :: (Eq v, Eq c) => Term v c -> Term v c -> Bool -- | compute new symbol at position, giving the position pmap :: (Position -> c -> d) -> Term v c -> Term v d -- | compute new symbol from *reverse* position and previous symbol this is -- more efficient (no reverse needed) rpmap :: (Position -> c -> d) -> Term v c -> Term v d peek :: Term v c -> Position -> Term v c peek_symbol :: Term v c -> Position -> c -- | warning: don't check arity poke_symbol :: Term v c -> (Position, c) -> Term v c poke :: Term v c -> (Position, Term v c) -> Term v c pokes :: Term v c -> [(Position, Term v c)] -> Term v c -- | in preorder symsl :: Term v c -> [c] syms :: Ord c => Term v c -> Set c lsyms :: Ord c => Term v c -> [c] vars :: Ord v => Term v c -> Set v isvar :: Term v c -> Bool -- | list of variables (each occurs once, unspecified ordering) lvars :: Ord v => Term v c -> [v] -- | list of variables (in pre-order, with duplicates) voccs :: Term v c -> [v] instance (GHC.Show.Show s, GHC.Show.Show v) => GHC.Show.Show (TPDB.Data.Term.Term v s) instance (GHC.Classes.Ord s, GHC.Classes.Ord v) => GHC.Classes.Ord (TPDB.Data.Term.Term v s) instance (GHC.Classes.Eq s, GHC.Classes.Eq v) => GHC.Classes.Eq (TPDB.Data.Term.Term v s) instance GHC.Base.Functor (TPDB.Data.Term.Term v) module TPDB.Pretty -- | The abstract data type Doc ann represents pretty -- documents that have been annotated with data of type ann. -- -- More specifically, a value of type Doc represents a -- non-empty set of possible layouts of a document. The layout functions -- select one of these possibilities, taking into account things like the -- width of the output document. -- -- The annotation is an arbitrary piece of data associated with (part of) -- a document. Annotations may be used by the rendering backends in order -- to display output differently, such as -- -- -- -- The simplest way to display a Doc is via the Show class. -- --
--   >>> putStrLn (show (vsep ["hello", "world"]))
--   hello
--   world
--   
data Doc ann :: * -> * -- | Overloaded conversion to Doc. -- -- Laws: -- --
    --
  1. output should be pretty. :-)
  2. --
class Pretty a -- |
--   >>> pretty 1 <+> pretty "hello" <+> pretty 1.234
--   1 hello 1.234
--   
pretty :: Pretty a => a -> Doc ann -- | prettyList is only used to define the instance -- Pretty a => Pretty [a]. In normal circumstances -- only the pretty function is used. -- --
--   >>> prettyList [1, 23, 456]
--   [1, 23, 456]
--   
prettyList :: Pretty a => [a] -> Doc ann render :: () => Doc ann -> Text renderWide :: () => Doc ann -> SimpleDocStream ann renderCompact :: () => Doc ann -> SimpleDocStream ann renderPretty :: () => Doc ann -> SimpleDocStream ann displayIO :: () => Handle -> SimpleDocStream ann -> IO () fsep :: () => [Doc ann] -> Doc ann sep :: () => [Doc ann] -> Doc ann hsep :: () => [Doc ann] -> Doc ann vsep :: () => [Doc ann] -> Doc ann vcat :: () => [Doc ann] -> Doc ann hcat :: () => [Doc ann] -> Doc ann -- |
--   >>> parens "·"
--   (·)
--   
parens :: () => Doc ann -> Doc ann -- |
--   >>> brackets "·"
--   [·]
--   
brackets :: () => Doc ann -> Doc ann -- |
--   >>> angles "·"
--   <·>
--   
angles :: () => Doc ann -> Doc ann -- |
--   >>> braces "·"
--   {·}
--   
braces :: () => Doc ann -> Doc ann -- | (enclose l r x) encloses document x between -- documents l and r using <>. -- --
--   >>> enclose "A" "Z" "·"
--   A·Z
--   
-- --
--   enclose l r x = l <> x <> r
--   
enclose :: () => Doc ann -> Doc ann -> Doc ann -> Doc ann -- | (encloseSep l r sep xs) concatenates the documents -- xs separated by sep, and encloses the resulting -- document by l and r. -- -- The documents are laid out horizontally if that fits the page, -- --
--   >>> let doc = "list" <+> align (encloseSep lbracket rbracket comma (map pretty [1,20,300,4000]))
--   
--   >>> putDocW 80 doc
--   list [1,20,300,4000]
--   
-- -- If there is not enough space, then the input is split into lines -- entry-wise therwise they are laid out vertically, with separators put -- in the front: -- --
--   >>> putDocW 10 doc
--   list [1
--        ,20
--        ,300
--        ,4000]
--   
-- -- Note that doc contains an explicit call to align so -- that the list items are aligned vertically. -- -- For putting separators at the end of entries instead, have a look at -- punctuate. encloseSep :: () => Doc ann -> Doc ann -> Doc ann -> [Doc ann] -> Doc ann -- | (punctuate p xs) appends p to all but the -- last document in xs. -- --
--   >>> let docs = punctuate comma (Util.words "lorem ipsum dolor sit amet")
--   
--   >>> putDocW 80 (hsep docs)
--   lorem, ipsum, dolor, sit, amet
--   
-- -- The separators are put at the end of the entries, which we can see if -- we position the result vertically: -- --
--   >>> putDocW 20 (vsep docs)
--   lorem,
--   ipsum,
--   dolor,
--   sit,
--   amet
--   
-- -- If you want put the commas in front of their elements instead of at -- the end, you should use tupled or, in general, -- encloseSep. punctuate :: () => Doc ann -> [Doc ann] -> [Doc ann] -- |
--   >>> comma
--   ,
--   
comma :: () => Doc ann -- | (nest i x) lays out the document x with the -- current indentation level increased by i. Negative values are -- allowed, and decrease the nesting level accordingly. -- --
--   >>> vsep [nest 4 (vsep ["lorem", "ipsum", "dolor"]), "sit", "amet"]
--   lorem
--       ipsum
--       dolor
--   sit
--   amet
--   
-- -- See also hang, align and indent. nest :: () => Int -> Doc ann -> Doc ann -- | Haskell-inspired variant of encloseSep with braces and comma as -- separator. -- --
--   >>> let doc = list (map pretty [1,20,300,4000])
--   
-- --
--   >>> putDocW 80 doc
--   [1, 20, 300, 4000]
--   
-- --
--   >>> putDocW 10 doc
--   [ 1
--   , 20
--   , 300
--   , 4000 ]
--   
list :: () => [Doc ann] -> Doc ann -- | Haskell-inspired variant of encloseSep with parentheses and -- comma as separator. -- --
--   >>> let doc = tupled (map pretty [1,20,300,4000])
--   
-- --
--   >>> putDocW 80 doc
--   (1, 20, 300, 4000)
--   
-- --
--   >>> putDocW 10 doc
--   ( 1
--   , 20
--   , 300
--   , 4000 )
--   
tupled :: () => [Doc ann] -> Doc ann empty :: Doc ann text :: String -> Doc ann (<+>) :: () => Doc ann -> Doc ann -> Doc ann ($$) :: () => Doc ann -> Doc ann -> Doc ann -- | (indent i x) indents document x with -- i spaces, starting from the current cursor position. -- --
--   >>> let doc = reflow "The indent function indents these words!"
--   
--   >>> putDocW 24 ("prefix" <> indent 4 doc)
--   prefix    The indent
--             function
--             indents these
--             words!
--   
-- --
--   indent i d = hang i ({i spaces} <> d)
--   
indent :: () => Int -> Doc ann -> Doc ann -- | (nest i x) lays out the document x with the -- current indentation level increased by i. Negative values are -- allowed, and decrease the nesting level accordingly. -- --
--   >>> vsep [nest 4 (vsep ["lorem", "ipsum", "dolor"]), "sit", "amet"]
--   lorem
--       ipsum
--       dolor
--   sit
--   amet
--   
-- -- See also hang, align and indent. nest :: () => Int -> Doc ann -> Doc ann -- | (hang i x) lays out the document x with a -- nesting level set to the current column plus i. -- Negative values are allowed, and decrease the nesting level -- accordingly. -- --
--   >>> let doc = reflow "Indenting these words with hang"
--   
--   >>> putDocW 24 ("prefix" <+> hang 4 doc)
--   prefix Indenting these
--              words with
--              hang
--   
-- -- This differs from nest, which is based on the current -- nesting level plus i. When you're not sure, try the more -- efficient nest first. In our example, this would yield -- --
--   >>> let doc = reflow "Indenting these words with nest"
--   
--   >>> putDocW 24 ("prefix" <+> nest 4 doc)
--   prefix Indenting these
--       words with nest
--   
-- --
--   hang i doc = align (nest i doc)
--   
hang :: () => Int -> Doc ann -> Doc ann instance (Data.Text.Prettyprint.Doc.Internal.Pretty a, Data.Text.Prettyprint.Doc.Internal.Pretty b, Data.Text.Prettyprint.Doc.Internal.Pretty c, Data.Text.Prettyprint.Doc.Internal.Pretty d) => Data.Text.Prettyprint.Doc.Internal.Pretty (a, b, c, d) instance (Data.Text.Prettyprint.Doc.Internal.Pretty a, Data.Text.Prettyprint.Doc.Internal.Pretty b) => Data.Text.Prettyprint.Doc.Internal.Pretty (Data.Either.Either a b) module TPDB.Data.Attributes data Attributes Attributes :: Int -> Int -> Int -> Int -> Int -> Bool -> Bool -> Bool -> Int -> Int -> Attributes [size_of_signature] :: Attributes -> Int [max_arity] :: Attributes -> Int [total_term_size] :: Attributes -> Int [max_term_size] :: Attributes -> Int [max_term_depth] :: Attributes -> Int [left_linear] :: Attributes -> Bool [right_linear] :: Attributes -> Bool [linear] :: Attributes -> Bool [max_var_count] :: Attributes -> Int -- | value is meaningless if the system has no variables [max_var_depth] :: Attributes -> Int compute_attributes :: (Ord v, Ord c) => [Rule (Term v c)] -> Attributes safe_maximum :: Ord p => p -> [p] -> p varcount :: Ord v => Rule (Term v c) -> Map v (Int, Int) varcount_term :: Ord v => Term v c -> Map v Int instance GHC.Show.Show TPDB.Data.Attributes.Attributes instance Data.Text.Prettyprint.Doc.Internal.Pretty TPDB.Data.Attributes.Attributes -- | Data types for rewrite systems and termination problems. A "bare" term -- rewrite system (list of rules and relative rules) is TRS v s. -- A termination problem is Problem v s. This contains a rewrite -- system plus extra information (strategy, theory, etc.) module TPDB.Data data Identifier Identifier :: !Int -> !String -> Int -> Identifier [_identifier_hash] :: Identifier -> !Int [name] :: Identifier -> !String [arity] :: Identifier -> Int mk :: Int -> String -> Identifier -- | according to XTC spec data Funcsym Funcsym :: String -> Int -> Maybe Theory -> Maybe Replacementmap -> Funcsym -- | should be Text [fs_name] :: Funcsym -> String [fs_arity] :: Funcsym -> Int [fs_theory] :: Funcsym -> Maybe Theory [fs_replacementmap] :: Funcsym -> Maybe Replacementmap data Signature Signature :: [Funcsym] -> Signature HigherOrderSignature :: Signature data Replacementmap Replacementmap :: [Int] -> Replacementmap data RS s r RS :: [s] -> [Rule r] -> Bool -> RS s r -- | better keep order in signature (?) [signature] :: RS s r -> [s] [rules] :: RS s r -> [Rule r] -- | if True, write comma between rules [separate] :: RS s r -> Bool strict_rules :: () => RS s b -> [(b, b)] weak_rules :: () => RS s b -> [(b, b)] equal_rules :: () => RS s b -> [(b, b)] type TRS v s = RS s (Term v s) type SRS s = RS s [s] data Problem v s Problem :: Type -> TRS v s -> Maybe Strategy -> Signature -> Maybe Startterm -> Attributes -> Problem v s [type_] :: Problem v s -> Type [trs] :: Problem v s -> TRS v s [strategy] :: Problem v s -> Maybe Strategy [full_signature] :: Problem v s -> Signature [startterm] :: Problem v s -> Maybe Startterm [attributes] :: Problem v s -> Attributes data Type Termination :: Type Complexity :: Type data Strategy Full :: Strategy Innermost :: Strategy Outermost :: Strategy -- | this is modelled after -- https://www.lri.fr/~marche/tpdb/format.html data Theorydecl v s -- | example: "(AC plus)" Property :: Theory -> [s] -> Theorydecl v s Equations :: [Rule (Term v s)] -> Theorydecl v s data Theory A :: Theory C :: Theory AC :: Theory data Startterm Startterm_Constructor_based :: Startterm Startterm_Full :: Startterm -- | legacy stuff (used in matchbox) type TES = TRS Identifier Identifier type SES = SRS Identifier mknullary :: String -> Identifier mkunary :: String -> Identifier from_strict_rules :: Bool -> [(t, t)] -> RS i t with_rules :: () => RS s r1 -> [Rule r2] -> RS s r2 instance GHC.Show.Show TPDB.Data.Startterm instance GHC.Show.Show TPDB.Data.Signature instance GHC.Show.Show TPDB.Data.Funcsym instance GHC.Show.Show TPDB.Data.Theory instance GHC.Read.Read TPDB.Data.Theory instance GHC.Classes.Ord TPDB.Data.Theory instance GHC.Classes.Eq TPDB.Data.Theory instance GHC.Show.Show TPDB.Data.Strategy instance GHC.Show.Show TPDB.Data.Type instance GHC.Show.Show TPDB.Data.Replacementmap instance GHC.Classes.Ord TPDB.Data.Identifier instance GHC.Classes.Eq TPDB.Data.Identifier instance GHC.Classes.Eq r => GHC.Classes.Eq (TPDB.Data.RS s r) instance GHC.Base.Functor (TPDB.Data.RS s) instance Data.Hashable.Class.Hashable TPDB.Data.Identifier instance GHC.Show.Show TPDB.Data.Identifier -- | the "old" TPDB format cf. -- http://www.lri.fr/~marche/tpdb/format.html module TPDB.Plain.Write class PrettyTerm a prettyTerm :: PrettyTerm a => a -> Doc ann instance TPDB.Plain.Write.PrettyTerm a => Data.Text.Prettyprint.Doc.Internal.Pretty (TPDB.Data.Rule.Rule a) instance Data.Text.Prettyprint.Doc.Internal.Pretty s => TPDB.Plain.Write.PrettyTerm [s] instance (Data.Text.Prettyprint.Doc.Internal.Pretty v, Data.Text.Prettyprint.Doc.Internal.Pretty s) => TPDB.Plain.Write.PrettyTerm (TPDB.Data.Term.Term v s) instance (Data.Text.Prettyprint.Doc.Internal.Pretty s, TPDB.Plain.Write.PrettyTerm r) => Data.Text.Prettyprint.Doc.Internal.Pretty (TPDB.Data.RS s r) instance Data.Text.Prettyprint.Doc.Internal.Pretty TPDB.Data.Identifier instance (Data.Text.Prettyprint.Doc.Internal.Pretty v, Data.Text.Prettyprint.Doc.Internal.Pretty s) => Data.Text.Prettyprint.Doc.Internal.Pretty (TPDB.Data.Term.Term v s) instance (Data.Text.Prettyprint.Doc.Internal.Pretty s, Data.Text.Prettyprint.Doc.Internal.Pretty r) => Data.Text.Prettyprint.Doc.Internal.Pretty (TPDB.Data.Problem s r) -- | textual input, cf. http://www.lri.fr/~marche/tpdb/format.html module TPDB.Plain.Read trs :: ByteString -> Either String (TRS Identifier Identifier) srs :: ByteString -> Either String (SRS Identifier) class Reader a reader :: Reader a => Parser a -- | warning: by definition, {}[] may appear in identifiers lexer :: GenTokenParser ByteString () Identity data Declaration u Var_Declaration :: [Identifier] -> Declaration u Theory_Declaration :: Declaration u Strategy_Declaration :: Declaration u Rules_Declaration :: [Rule u] -> Declaration u -- | this is super-ugly: a parenthesized, possibly nested, possibly -- comma-separated, list of identifiers or strings Unknown_Declaration :: Declaration u declaration :: Reader u => Bool -> Parser (Declaration u) anylist :: ParsecT ByteString () Identity () repair_signature_srs :: Eq s1 => RS s2 [s1] -> RS s1 [s1] make_srs :: Eq s => [Declaration [s]] -> SRS s repair_signature_trs :: Ord s1 => RS s2 Term v s1 -> RS s1 Term v s1 make_trs :: [Declaration (Term Identifier Identifier)] -> TRS Identifier Identifier repair_variables :: (Eq s, Foldable t, Monad m) => t s -> m Rule Term v s -> m Rule Term s s instance TPDB.Plain.Read.Reader TPDB.Data.Identifier instance TPDB.Plain.Read.Reader s => TPDB.Plain.Read.Reader [s] instance TPDB.Plain.Read.Reader v => TPDB.Plain.Read.Reader (TPDB.Data.Term.Term v TPDB.Data.Identifier) instance TPDB.Plain.Read.Reader u => TPDB.Plain.Read.Reader (TPDB.Data.Rule.Rule u) instance TPDB.Plain.Read.Reader (TPDB.Data.SRS TPDB.Data.Identifier) instance TPDB.Plain.Read.Reader (TPDB.Data.TRS TPDB.Data.Identifier TPDB.Data.Identifier) module TPDB.DP.Unify -- | naive implementation (worst case exponential) mgu :: (Ord v, Eq c) => Term v c -> Term v c -> Maybe (Map v (Term v c)) -- | will only bind variables in the left side match :: (Ord v, Ord w, Eq c) => Term v c -> Term w c -> Maybe (Map v (Term w c)) unifies :: (Eq c, Ord v) => Term v c -> Term v c -> Bool apply :: Ord k => Term k s -> Map k Term k s -> Term k s times :: Ord v => Substitution v c -> Substitution v c -> Substitution v c module TPDB.Convert srs2trs :: SRS Identifier -> TRS Identifier Identifier set_arity :: Int -> Identifier -> Identifier convert_srs_rule :: Rule [Identifier] -> Rule Term Identifier Identifier trs2srs :: Eq v => TRS v s -> Maybe (SRS s) convert_trs_rule :: Eq a => Rule Term a s -> Maybe Rule [s] unspine :: v -> [s] -> Term v s -- | success iff term consists of unary symbols and the lowest node is a -- variable spine :: Term v s -> Maybe ([s], v) module TPDB.Mirror -- | if input is SRS, reverse lhs and rhs of each rule mirror :: TRS Identifier s -> Maybe (TRS Identifier s) module TPDB.DP.Transform data Marked a Original :: a -> Marked a Marked :: a -> Marked a Auxiliary :: a -> Marked a isOriginal :: () => Marked a -> Bool isMarked :: () => Marked a -> Bool mark_top :: Term v a -> Term v (Marked a) defined :: Ord a => RS s Term v a -> Set a -- | compute the DP transformed system. dp :: (Ord v, Ord s) => RS s (Term v s) -> RS (Marked s) (Term v (Marked s)) instance GHC.Generics.Generic (TPDB.DP.Transform.Marked a) instance GHC.Classes.Ord a => GHC.Classes.Ord (TPDB.DP.Transform.Marked a) instance GHC.Classes.Eq a => GHC.Classes.Eq (TPDB.DP.Transform.Marked a) instance GHC.Show.Show a => GHC.Show.Show (TPDB.DP.Transform.Marked a) instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (TPDB.DP.Transform.Marked a) instance Data.Text.Prettyprint.Doc.Internal.Pretty a => Data.Text.Prettyprint.Doc.Internal.Pretty (TPDB.DP.Transform.Marked a) module TPDB.DP.TCap -- | This function keeps only those parts of the input term which cannot be -- reduced, even if the term is instantiated. All other parts are -- replaced by fresh variables. Def 4.4 in -- http://cl-informatik.uibk.ac.at/users/griff/publications/Sternagel-Thiemann-RTA10.pdf tcap :: (Ord v, Ord c) => TRS v c -> Term v c -> Term Int c fresh_var :: State Int (Term Int c) walk :: (Eq c, Ord a) => RS s Term a c -> Term v c -> StateT Int Identity Term Int c module TPDB.DP.Usable -- | DANGER: this ignores the CE condition restrict :: (Ord c, Ord v) => RS c (Term v c) -> RS c (Term v c) -- | computes the least closed set of usable rules, cf. Def 4.5 -- http://cl-informatik.uibk.ac.at/users/griff/publications/Sternagel-Thiemann-RTA10.pdf usable :: (Ord v, Ord c) => TRS v c -> Set (Rule (Term v c)) fixpoint :: Eq t => (t -> t) -> t -> t required :: (Ord v, Ord c) => TRS v c -> Set (Rule (Term v c)) -> Set (Rule (Term v c)) needed :: (Ord v, Ord c) => TRS v c -> Term v c -> [Rule (Term v c)] module TPDB.DP.Graph -- | DP problems for strongly connected components, topologically sorted, -- with CyclicComponents in Right, others in Left. components :: (Ord b, Ord a) => RS Marked a Term b Marked a -> [Either Rule Term b Marked a RS Marked a Term b Marked a] -- | edges of the estimated dependency graph edges :: (Ord a, Ord b) => RS Marked a Term b Marked a -> [(Rule Term b Marked a, Rule Term b Marked a)] check :: [(Rule Term Identifier Marked Identifier, Rule Term Identifier Marked Identifier)] sys :: TRS Identifier Identifier module TPDB.DP -- | internal representation of CPF termination proofs, see -- http://cl-informatik.uibk.ac.at/software/cpf/ module TPDB.CPF.Proof.Type data CertificationProblem CertificationProblem :: CertificationProblemInput -> String -> Proof -> Origin -> CertificationProblem [input] :: CertificationProblem -> CertificationProblemInput [cpfVersion] :: CertificationProblem -> String [proof] :: CertificationProblem -> Proof [origin] :: CertificationProblem -> Origin data Origin ProofOrigin :: Tool -> Origin [tool] :: Origin -> Tool ignoredOrigin :: Origin data Tool Tool :: String -> String -> Tool [name] :: Tool -> String [version] :: Tool -> String data CertificationProblemInput -- | this is actually not true, since instead of copying from XTC, CPF -- format repeats the definition of TRS, and it's a different one -- (relative rules are extra) TrsInput :: TRS Identifier Identifier -> CertificationProblemInput [trsinput_trs] :: CertificationProblemInput -> TRS Identifier Identifier ComplexityInput :: TRS Identifier Identifier -> ComplexityMeasure -> ComplexityClass -> CertificationProblemInput [trsinput_trs] :: CertificationProblemInput -> TRS Identifier Identifier [complexityMeasure] :: CertificationProblemInput -> ComplexityMeasure [complexityClass] :: CertificationProblemInput -> ComplexityClass ACRewriteSystem :: TRS Identifier Identifier -> [Identifier] -> [Identifier] -> CertificationProblemInput [trsinput_trs] :: CertificationProblemInput -> TRS Identifier Identifier [asymbols] :: CertificationProblemInput -> [Identifier] [csymbols] :: CertificationProblemInput -> [Identifier] data Proof TrsTerminationProof :: TrsTerminationProof -> Proof TrsNonterminationProof :: TrsNonterminationProof -> Proof RelativeTerminationProof :: TrsTerminationProof -> Proof RelativeNonterminationProof :: TrsNonterminationProof -> Proof ComplexityProof :: ComplexityProof -> Proof ACTerminationProof :: ACTerminationProof -> Proof data DPS DPS :: [Rule (Term Identifier s)] -> DPS data ComplexityProof ComplexityProofFIXME :: () -> ComplexityProof data ComplexityMeasure DerivationalComplexity :: ComplexityMeasure RuntimeComplexity :: ComplexityMeasure data ComplexityClass -- | it seems the degree must always be given in CPF, although the category -- spec also allows POLY -- http://cl-informatik.uibk.ac.at/users/georg/cbr/competition/rules.php ComplexityClassPolynomial :: Int -> ComplexityClass [degree] :: ComplexityClass -> Int data TrsNonterminationProof TrsNonterminationProofFIXME :: () -> TrsNonterminationProof data TrsTerminationProof RIsEmpty :: TrsTerminationProof RuleRemoval :: OrderingConstraintProof -> TRS Identifier Identifier -> TrsTerminationProof -> TrsTerminationProof [rr_orderingConstraintProof] :: TrsTerminationProof -> OrderingConstraintProof [trs] :: TrsTerminationProof -> TRS Identifier Identifier [trsTerminationProof] :: TrsTerminationProof -> TrsTerminationProof DpTrans :: DPS -> Bool -> DpProof -> TrsTerminationProof [dptrans_dps] :: TrsTerminationProof -> DPS [markedSymbols] :: TrsTerminationProof -> Bool [dptrans_dpProof] :: TrsTerminationProof -> DpProof Semlab :: Model -> TRS Identifier Identifier -> TrsTerminationProof -> TrsTerminationProof [model] :: TrsTerminationProof -> Model [trs] :: TrsTerminationProof -> TRS Identifier Identifier [trsTerminationProof] :: TrsTerminationProof -> TrsTerminationProof Unlab :: TRS Identifier Identifier -> TrsTerminationProof -> TrsTerminationProof [trs] :: TrsTerminationProof -> TRS Identifier Identifier [trsTerminationProof] :: TrsTerminationProof -> TrsTerminationProof StringReversal :: TRS Identifier Identifier -> TrsTerminationProof -> TrsTerminationProof [trs] :: TrsTerminationProof -> TRS Identifier Identifier [trsTerminationProof] :: TrsTerminationProof -> TrsTerminationProof Bounds :: TRS Identifier Identifier -> Bounds_Type -> Int -> [State] -> ClosedTreeAutomaton -> TrsTerminationProof [trs] :: TrsTerminationProof -> TRS Identifier Identifier [bounds_type] :: TrsTerminationProof -> Bounds_Type [bounds_bound] :: TrsTerminationProof -> Int [bounds_finalStates] :: TrsTerminationProof -> [State] [bounds_closedTreeAutomaton] :: TrsTerminationProof -> ClosedTreeAutomaton data Bounds_Type Roof :: Bounds_Type Match :: Bounds_Type data ClosedTreeAutomaton ClosedTreeAutomaton :: TreeAutomaton -> Criterion -> ClosedTreeAutomaton [cta_treeAutomaton] :: ClosedTreeAutomaton -> TreeAutomaton [cta_criterion] :: ClosedTreeAutomaton -> Criterion data Criterion Compatibility :: Criterion data TreeAutomaton TreeAutomaton :: [State] -> [Transition] -> TreeAutomaton [ta_finalStates] :: TreeAutomaton -> [State] [ta_transitions] :: TreeAutomaton -> [Transition] data State State :: Int -> State data Transition Transition :: Transition_Lhs -> [State] -> Transition [transition_lhs] :: Transition -> Transition_Lhs [transition_rhs] :: Transition -> [State] data Transition_Lhs Transition_Symbol :: Symbol -> Int -> [State] -> Transition_Lhs [tr_symbol] :: Transition_Lhs -> Symbol [tr_height] :: Transition_Lhs -> Int [tr_arguments] :: Transition_Lhs -> [State] Transition_Epsilon :: State -> Transition_Lhs data Model FiniteModel :: Int -> [Interpret] -> Model data DpProof PIsEmpty :: DpProof RedPairProc :: OrderingConstraintProof -> DPS -> Maybe DPS -> DpProof -> DpProof [rppOrderingConstraintProof] :: DpProof -> OrderingConstraintProof [rppDps] :: DpProof -> DPS [rppUsableRules] :: DpProof -> Maybe DPS [rppDpProof] :: DpProof -> DpProof DepGraphProc :: [DepGraphComponent] -> DpProof SemLabProc :: Model -> DPS -> DPS -> DpProof -> DpProof [slpModel] :: DpProof -> Model [slpDps] :: DpProof -> DPS [slpTrs] :: DpProof -> DPS [slpDpProof] :: DpProof -> DpProof UnlabProc :: DPS -> DPS -> DpProof -> DpProof [ulpDps] :: DpProof -> DPS [ulpTrs] :: DpProof -> DPS [ulpDpProof] :: DpProof -> DpProof data DepGraphComponent DepGraphComponent :: Bool -> DPS -> DpProof -> DepGraphComponent [dgcRealScc] :: DepGraphComponent -> Bool [dgcDps] :: DepGraphComponent -> DPS [dgcDpProof] :: DepGraphComponent -> DpProof data OrderingConstraintProof OCPRedPair :: RedPair -> OrderingConstraintProof data RedPair RPInterpretation :: Interpretation -> RedPair RPPathOrder :: PathOrder -> RedPair data Interpretation Interpretation :: Interpretation_Type -> [Interpret] -> Interpretation [interpretation_type] :: Interpretation -> Interpretation_Type [interprets] :: Interpretation -> [Interpret] data Interpretation_Type Matrix_Interpretation :: Domain -> Int -> Int -> Interpretation_Type [domain] :: Interpretation_Type -> Domain [dimension] :: Interpretation_Type -> Int [strictDimension] :: Interpretation_Type -> Int data Domain Naturals :: Domain Rationals :: Rational -> Domain Arctic :: Domain -> Domain Tropical :: Domain -> Domain data Interpret Interpret :: Symbol -> Int -> Value -> Interpret [symbol] :: Interpret -> Symbol [arity] :: Interpret -> Int [value] :: Interpret -> Value data Value Polynomial :: Polynomial -> Value ArithFunction :: ArithFunction -> Value data Polynomial Sum :: [Polynomial] -> Polynomial Product :: [Polynomial] -> Polynomial Polynomial_Coefficient :: Coefficient -> Polynomial Polynomial_Variable :: String -> Polynomial data ArithFunction AFNatural :: Integer -> ArithFunction AFVariable :: Integer -> ArithFunction AFSum :: [ArithFunction] -> ArithFunction AFProduct :: [ArithFunction] -> ArithFunction AFMin :: [ArithFunction] -> ArithFunction AFMax :: [ArithFunction] -> ArithFunction AFIfEqual :: ArithFunction -> ArithFunction -> ArithFunction -> ArithFunction -> ArithFunction data Symbol SymName :: Identifier -> Symbol SymSharp :: Symbol -> Symbol SymLabel :: Symbol -> Label -> Symbol data Label LblNumber :: [Integer] -> Label LblSymbol :: [Symbol] -> Label data Coefficient Vector :: [Coefficient] -> Coefficient Matrix :: [Coefficient] -> Coefficient Coefficient_Coefficient :: a -> Coefficient data Exotic Minus_Infinite :: Exotic E_Integer :: Integer -> Exotic E_Rational :: Rational -> Exotic Plus_Infinite :: Exotic class ToExotic a toExotic :: ToExotic a => a -> Exotic data PathOrder PathOrder :: [PrecedenceEntry] -> [ArgumentFilterEntry] -> PathOrder data PrecedenceEntry PrecedenceEntry :: Symbol -> Int -> Integer -> PrecedenceEntry [peSymbol] :: PrecedenceEntry -> Symbol [peArity] :: PrecedenceEntry -> Int [pePrecedence] :: PrecedenceEntry -> Integer data ArgumentFilterEntry ArgumentFilterEntry :: Symbol -> Int -> Either Int [Int] -> ArgumentFilterEntry [afeSymbol] :: ArgumentFilterEntry -> Symbol [afeArity] :: ArgumentFilterEntry -> Int [afeFilter] :: ArgumentFilterEntry -> Either Int [Int] data ACTerminationProof ACTerminationProofFIXME :: () -> ACTerminationProof data Identifier -- | legacy stuff (used in matchbox) type TES = TRS Identifier Identifier instance GHC.Classes.Eq TPDB.CPF.Proof.Type.CertificationProblem instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Proof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ACTerminationProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.TrsTerminationProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.DepGraphComponent instance GHC.Classes.Eq TPDB.CPF.Proof.Type.DpProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.OrderingConstraintProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.RedPair instance GHC.Classes.Eq TPDB.CPF.Proof.Type.PathOrder instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ArgumentFilterEntry instance GHC.Classes.Eq TPDB.CPF.Proof.Type.PrecedenceEntry instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Exotic instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Model instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Interpretation instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Interpret instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Value instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Polynomial instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ClosedTreeAutomaton instance GHC.Classes.Eq TPDB.CPF.Proof.Type.TreeAutomaton instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Transition instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Transition_Lhs instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Symbol instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Label instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ArithFunction instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Interpretation_Type instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Domain instance GHC.Classes.Eq TPDB.CPF.Proof.Type.State instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Criterion instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Bounds_Type instance GHC.Classes.Eq TPDB.CPF.Proof.Type.TrsNonterminationProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.CertificationProblemInput instance GHC.Show.Show TPDB.CPF.Proof.Type.ComplexityClass instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ComplexityClass instance GHC.Show.Show TPDB.CPF.Proof.Type.ComplexityMeasure instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ComplexityMeasure instance GHC.Classes.Eq TPDB.CPF.Proof.Type.ComplexityProof instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Origin instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Tool instance GHC.Classes.Eq TPDB.CPF.Proof.Type.Coefficient instance Data.Text.Prettyprint.Doc.Internal.Pretty TPDB.CPF.Proof.Type.CertificationProblemInput instance GHC.Classes.Eq TPDB.CPF.Proof.Type.DPS module TPDB.CPF.Proof.Util fromMarkedIdentifier :: Marked Identifier -> Symbol sortVariables :: Rule (Term Identifier s) -> Rule (Term Identifier s) -- | construct data object from XML tree. module TPDB.XTC.Read atTag :: ArrowXml a => String -> a NTree XNode XmlTree getTerm :: ArrowXml a => a XmlTree Term Identifier Identifier getVar :: ArrowXml t => t XmlTree Term Identifier s getFunApp :: ArrowXml a => a XmlTree Term Identifier Identifier gotoChild :: ArrowXml t => String -> t NTree XNode NTree XNode getChild :: ArrowXml t => String -> t NTree XNode XmlTree getProblem :: ArrowXml cat => cat NTree XNode Problem Identifier Identifier getType :: Arrow t => t [Char] Type getStrategy :: ArrowXml t => t NTree XNode Maybe Strategy getStartterm :: ArrowXml a => a NTree XNode Startterm getTRS :: ArrowXml t => t NTree XNode RS Identifier Term Identifier Identifier getSignature :: ArrowXml a => a NTree XNode Signature getFOSignature :: ArrowXml t => t NTree XNode Signature getHOSignature :: Arrow t1 => t1 t2 Signature getFuncsym :: ArrowXml t => t NTree XNode Funcsym getRead :: (Read t2, ArrowXml t1) => t1 XmlTree t2 getRules :: ArrowXml t => Relation -> t NTree XNode [Rule Term Identifier Identifier] getRule :: ArrowXml t => Relation -> t NTree XNode Rule Term Identifier Identifier readProblems :: FilePath -> IO [Problem Identifier Identifier] readProblemsBS :: ByteString -> IO [Problem Identifier Identifier] -- | read benchmark from in-memory data (e.g., from a ByteString) module TPDB.Input.Memory -- | first argument is file name, second argument is file contents. first -- arg. is needed to pick the proper parser (SRS, TRS, XTC) get :: String -> ByteString -> IO (Either String (Either (TRS Identifier Identifier) (SRS Identifier))) module TPDB.Input.File -- | read input from file with given name. can have extension .srs, .trs, -- .xml. unknown extension is considered as .xml, because of -- http://starexec.forumotion.com/t60-restore-file-extension-for-renamed-benchmarks get :: FilePath -> IO (Either (TRS Identifier Identifier) (SRS Identifier)) getE :: FilePath -> IO Either String Either TRS Identifier Identifier SRS Identifier get_trs :: FilePath -> IO TRS Identifier Identifier getE_trs :: FilePath -> IO Either String TRS Identifier Identifier get_srs :: FilePath -> IO SRS Identifier -- | Deprecated: use TPDB.INput.File instead module TPDB.Input module TPDB.XTC.Write document :: Problem Identifier Identifier -> Document writeFile :: RenderSettings -> FilePath -> Document -> IO () renderLBS :: RenderSettings -> Document -> ByteString renderText :: RenderSettings -> Document -> Text -- | The default value for this type. def :: Default a => a module TPDB.XTC module TPDB.Xml mkel :: Name -> [Content ()] -> Content () rmkel :: Monad m => Name -> [Content ()] -> m Content () nospaceString :: String -> Content () escape :: [Char] -> [Char] type Contents = [Content Posn] data CParser a CParser :: (Contents -> Maybe (a, Contents)) -> CParser a [unCParser] :: CParser a -> Contents -> Maybe (a, Contents) must_succeed :: CParser a -> CParser a class Typeable a => XRead a xread :: XRead a => CParser a wrap :: forall a. Typeable a => CParser a -> Parser (Content Posn) a errmsg :: () => [Content i] -> String orelse :: CParser a -> CParser a -> CParser a many :: CParser a -> CParser [a] element :: () => Name -> CParser a -> CParser a element0 :: () => QName -> CParser a -> CParser a strip :: () => [Content i] -> [Content i] xfromstring :: Read a => CParser a complain :: String -> CParser a info :: Contents -> String instance (Data.Typeable.Internal.Typeable a, Text.XML.HaXml.XmlContent.Parser.XmlContent a) => TPDB.Xml.XRead a instance GHC.Base.Functor TPDB.Xml.CParser instance GHC.Base.Applicative TPDB.Xml.CParser instance GHC.Base.Monad TPDB.Xml.CParser instance Data.Typeable.Internal.Typeable t => Text.XML.HaXml.TypeMapping.HTypeable t module TPDB.Data.Xml -- | FIXME: move to separate module no_sharp_name_HACK :: () => p -> p sharp_name_HACK :: Monad m => [Content ()] -> m Content () instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.Data.Identifier instance (Data.Typeable.Internal.Typeable (TPDB.Data.Term.Term v c), Text.XML.HaXml.XmlContent.Parser.XmlContent v, Text.XML.HaXml.XmlContent.Parser.XmlContent c) => Text.XML.HaXml.XmlContent.Parser.XmlContent (TPDB.Data.Term.Term v c) instance Text.XML.HaXml.TypeMapping.HTypeable (TPDB.Data.Rule.Rule (TPDB.Data.Term.Term v c)) instance (Text.XML.HaXml.TypeMapping.HTypeable (TPDB.Data.Rule.Rule (TPDB.Data.Term.Term v c)), Text.XML.HaXml.XmlContent.Parser.XmlContent (TPDB.Data.Term.Term v c)) => Text.XML.HaXml.XmlContent.Parser.XmlContent (TPDB.Data.Rule.Rule (TPDB.Data.Term.Term v c)) -- | from internal representation to XML, and back module TPDB.CPF.Proof.Write tox :: CertificationProblem -> Document () symbolize :: Functor f => RS Identifier f Identifier -> RS Symbol f Symbol instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.CertificationProblem instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Origin instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Tool instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.CertificationProblemInput instance Text.XML.HaXml.XmlContent.Parser.XmlContent (TPDB.Data.TRS TPDB.Data.Identifier TPDB.CPF.Proof.Type.Symbol) instance (Data.Typeable.Internal.Typeable t, Text.XML.HaXml.XmlContent.Parser.XmlContent t) => Text.XML.HaXml.XmlContent.Parser.XmlContent (TPDB.Data.Rule.Rule t) instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Proof instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.DPS instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.TrsTerminationProof instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Bounds_Type instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.State instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.ClosedTreeAutomaton instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Criterion instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.TreeAutomaton instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Transition instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Transition_Lhs instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Model instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.DpProof instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.DepGraphComponent instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.OrderingConstraintProof instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.RedPair instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Interpretation instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Interpretation_Type instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Domain instance Text.XML.HaXml.XmlContent.Parser.XmlContent GHC.Real.Rational instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Interpret instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Value instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Polynomial instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.ArithFunction instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Coefficient instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Exotic instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Symbol instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.Label instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.PathOrder instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.PrecedenceEntry instance Text.XML.HaXml.XmlContent.Parser.XmlContent TPDB.CPF.Proof.Type.ArgumentFilterEntry module TPDB.CPF.Proof.Read -- | dangerous: not all constructor arguments will be set. the function -- produces something like -- -- CertificationProblem { input = CertificationProblemInput , proof = -- TrsTerminationProof undefined } readCP :: String -> IO [CertificationProblem] readCP_with_tracelevel :: Int -> String -> IO [CertificationProblem] getCP :: ArrowXml cat => cat NTree XNode CertificationProblem getInput :: ArrowXml a => a XmlTree CertificationProblemInput getTerminationInput :: ArrowXml cat => cat XmlTree CertificationProblemInput getACTerminationInput :: ArrowXml cat => cat XmlTree CertificationProblemInput getSymbol :: ArrowXml t => t NTree XNode Identifier getComplexityInput :: ArrowXml cat => cat XmlTree CertificationProblemInput getComplexityMeasure :: ArrowXml a => a NTree XNode ComplexityMeasure getComplexityClass :: ArrowXml t => t NTree XNode ComplexityClass getTrsInput :: ArrowXml t => t NTree XNode [Rule Term Identifier Identifier] getTrs :: ArrowXml t => t NTree XNode [Rule Term Identifier Identifier] getTrsWith :: ArrowXml t => Relation -> t NTree XNode [Rule Term Identifier Identifier] getProof :: ArrowXml a => a NTree XNode Proof getDummy :: ArrowXml t1 => String -> t2 -> t1 NTree XNode t2 getRules :: ArrowXml t => Relation -> t NTree XNode [Rule Term Identifier Identifier] getRule :: ArrowXml t => Relation -> t NTree XNode Rule Term Identifier Identifier getTerm :: ArrowXml a => a XmlTree Term Identifier Identifier getVar :: ArrowXml t => t XmlTree Term Identifier s getFunApp :: ArrowXml a => a XmlTree Term Identifier Identifier gotoChild :: ArrowXml t => String -> t NTree XNode NTree XNode getChild :: ArrowXml t => String -> t NTree XNode XmlTree module TPDB.CPF.Proof.Xml -- | original author: Malcolm Wallace, license: LGPL -- http://hackage.haskell.org/packages/archive/HaXml/1.23.3/doc/html/Text-XML-HaXml-Pretty.html -- -- modified by Johannes Waldmann to use a different pretty-printer -- back-end. -- -- This is a pretty-printer for turning the internal representation of -- generic structured XML documents into the Doc type (which can later be -- rendered using Text.PrettyPrint.HughesPJ.render). Essentially there is -- one pp function for each type in Text.Xml.HaXml.Types, so you can -- pretty-print as much or as little of the document as you wish. module TPDB.Xml.Pretty document :: Document i -> Doc content :: Content i -> Doc element :: Element i -> Doc doctypedecl :: DocTypeDecl -> Doc prolog :: Prolog -> Doc cp :: CP -> Doc