%-------------------------------------------------------------------------- % File : CAT003-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Category Theory % Axioms : Category theory axioms % Version : [Sco79] axioms : Reduced > Complete. % English : % Refs : [Sco79] Scott (1979), Identity and Existence in Intuitionist L % Source : [ANL] % Names : % Status : Satisfiable % Syntax : Number of clauses : 17 ( 2 non-Horn; 3 unit; 12 RR) % Number of atoms : 37 ( 15 equality) % Maximal clause size : 4 ( 2 average) % Number of predicates : 3 ( 0 propositional; 1-2 arity) % Number of functors : 4 ( 0 constant; 1-2 arity) % Number of variables : 31 ( 4 singleton) % Maximal term depth : 3 ( 1 average) % SPC : % Comments : Axioms simplified by Art Quaife. %-------------------------------------------------------------------------- %----Non-standard in that E(x) stands for "x exists", i.e. a system for %----intuitionistic logic. Viewed classically, this can be taken %----as a partitioning of models M into elements of E and other elements %----of M; then Scott's quantifiers are relativized to range only over %----E, whereas free variables range over all of M. %----Quaife has this written: (this looks really weird, but results from %----having = here stand for equivalence, and it is a strange fact from %----Scott's conception that all non-existent things are equivalent. all %----x all y ((x == y) | E(x) | E(y))). %-----Restricted equality axioms cnf(equivalence_implies_existence1,axiom, ( ~ equivalent(X,Y) | there_exists(X) )). cnf(equivalence_implies_existence2,axiom, ( ~ equivalent(X,Y) | X = Y )). cnf(existence_and_equality_implies_equivalence1,axiom, ( ~ there_exists(X) | X != Y | equivalent(X,Y) )). %-----Category theory axioms cnf(domain_has_elements,axiom, ( ~ there_exists(domain(X)) | there_exists(X) )). cnf(codomain_has_elements,axiom, ( ~ there_exists(codomain(X)) | there_exists(X) )). cnf(composition_implies_domain,axiom, ( ~ there_exists(compose(X,Y)) | there_exists(domain(X)) )). cnf(domain_codomain_composition1,axiom, ( ~ there_exists(compose(X,Y)) | domain(X) = codomain(Y) )). cnf(domain_codomain_composition2,axiom, ( ~ there_exists(domain(X)) | domain(X) != codomain(Y) | there_exists(compose(X,Y)) )). cnf(associativity_of_compose,axiom, ( compose(X,compose(Y,Z)) = compose(compose(X,Y),Z) )). cnf(compose_domain,axiom, ( compose(X,domain(X)) = X )). cnf(compose_codomain,axiom, ( compose(codomain(X),X) = X )). %-----Axioms from Scott proven dependant by Quaife (with OTTER) %-----Restricted equality axioms cnf(equivalence_implies_existence3,axiom, ( ~ equivalent(X,Y) | there_exists(Y) )). cnf(existence_and_equality_implies_equivalence2,axiom, ( ~ there_exists(X) | ~ there_exists(Y) | X != Y | equivalent(X,Y) )). %-----Category theory axioms cnf(composition_implies_codomain,axiom, ( ~ there_exists(compose(X,Y)) | there_exists(codomain(X)) )). %-----Axiom of indiscernibles cnf(indiscernibles1,axiom, ( there_exists(f1(X,Y)) | X = Y )). cnf(indiscernibles2,axiom, ( X = f1(X,Y) | Y = f1(X,Y) | X = Y )). cnf(indiscernibles3,axiom, ( X != f1(X,Y) | Y != f1(X,Y) | X = Y )). %----definition of functor: morphisms of categories; i.e. functions -that %----are strict : E(f(x)) -> E(x). %----- total : E(x) -> E(f(x)). %----- preserving: f(dom(x)) = dom(f(x)). %----- f(cod(x)) = cod(f(x)). %----- E(star(x,y)) -> (f(star(x,y)) = star(f(x),f(y))). %--------------------------------------------------------------------------