%-------------------------------------------------------------------------- % File : SET002-0 : TPTP v7.2.0. Released v1.0.0. % Domain : Set Theory % Axioms : Set theory axioms % Version : [MOW76] axioms : Biased. % English : % Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a % Source : [ANL] % Names : % Status : Satisfiable % Syntax : Number of clauses : 21 ( 3 non-Horn; 3 unit; 15 RR) % Number of atoms : 45 ( 0 equality) % Maximal clause size : 3 ( 2 average) % Number of predicates : 4 ( 0 propositional; 2-2 arity) % Number of functors : 5 ( 1 constant; 0-2 arity) % Number of variables : 48 ( 5 singleton) % Maximal term depth : 2 ( 1 average) % SPC : % Comments : %-------------------------------------------------------------------------- %-----Definition of the empty set. cnf(empty_set,axiom, ( ~ member(X,empty_set) )). %-----Subset axioms. These are the same as in SET001-0.ax cnf(membership_in_subsets,axiom, ( ~ member(Element,Subset) | ~ subset(Subset,Superset) | member(Element,Superset) )). cnf(subsets_axiom1,axiom, ( subset(Subset,Superset) | member(member_of_1_not_of_2(Subset,Superset),Subset) )). cnf(subsets_axiom2,axiom, ( ~ member(member_of_1_not_of_2(Subset,Superset),Superset) | subset(Subset,Superset) )). %-----Axioms of complementation. cnf(member_of_set_or_complement,axiom, ( member(X,Xs) | member(X,complement(Xs)) )). cnf(not_member_of_set_and_complement,axiom, ( ~ member(X,Xs) | ~ member(X,complement(Xs)) )). %-----Axioms of union. cnf(member_of_set1_is_member_of_union,axiom, ( ~ member(X,Xs) | member(X,union(Xs,Ys)) )). cnf(member_of_set2_is_member_of_union,axiom, ( ~ member(X,Ys) | member(X,union(Xs,Ys)) )). cnf(member_of_union_is_member_of_one_set,axiom, ( ~ member(X,union(Xs,Ys)) | member(X,Xs) | member(X,Ys) )). %-----Axioms of intersection. cnf(member_of_both_is_member_of_intersection,axiom, ( ~ member(X,Xs) | ~ member(X,Ys) | member(X,intersection(Xs,Ys)) )). cnf(member_of_intersection_is_member_of_set1,axiom, ( ~ member(X,intersection(Xs,Ys)) | member(X,Xs) )). cnf(member_of_intersection_is_member_of_set2,axiom, ( ~ member(X,intersection(Xs,Ys)) | member(X,Ys) )). %-----Set equality axioms. cnf(set_equal_sets_are_subsets1,axiom, ( ~ equal_sets(Subset,Superset) | subset(Subset,Superset) )). cnf(set_equal_sets_are_subsets2,axiom, ( ~ equal_sets(Superset,Subset) | subset(Subset,Superset) )). cnf(subsets_are_set_equal_sets,axiom, ( ~ subset(Set1,Set2) | ~ subset(Set2,Set1) | equal_sets(Set2,Set1) )). %-----Equality axioms. cnf(reflexivity_for_set_equal,axiom, ( equal_sets(Xs,Xs) )). cnf(symmetry_for_set_equal,axiom, ( ~ equal_sets(Xs,Ys) | equal_sets(Ys,Xs) )). cnf(transitivity_for_set_equal,axiom, ( ~ equal_sets(Xs,Ys) | ~ equal_sets(Ys,Zs) | equal_sets(Xs,Zs) )). cnf(reflexivity_for_equal_elements,axiom, ( equal_elements(X,X) )). cnf(symmetry_for_equal_elements,axiom, ( ~ equal_elements(X,Y) | equal_elements(Y,X) )). cnf(transitivity_for_equal_elements,axiom, ( ~ equal_elements(X,Y) | ~ equal_elements(Y,Z) | equal_elements(X,Z) )). %--------------------------------------------------------------------------