{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Classes -- Copyright : (c) Ross Paterson 2013 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : R.Paterson@city.ac.uk -- Stability : experimental -- Portability : portable -- -- Liftings of the Prelude classes 'Eq', 'Ord', 'Read' and 'Show' to -- unary and binary type constructors. -- -- These classes are needed to express the constraints on arguments of -- transformers in portable Haskell. Thus for a new transformer @T@, -- one might write instances like -- -- > instance (Eq1 f) => Eq1 (T f) where ... -- > instance (Ord1 f) => Ord1 (T f) where ... -- > instance (Read1 f) => Read1 (T f) where ... -- > instance (Show1 f) => Show1 (T f) where ... -- -- If these instances can be defined, defining instances of the base -- classes is mechanical: -- -- > instance (Eq1 f, Eq a) => Eq (T f a) where (==) = eq1 -- > instance (Ord1 f, Ord a) => Ord (T f a) where compare = compare1 -- > instance (Read1 f, Read a) => Read (T f a) where readsPrec = readsPrec1 -- > instance (Show1 f, Show a) => Show (T f a) where showsPrec = showsPrec1 -- ----------------------------------------------------------------------------- module Data.Functor.Classes ( -- * Liftings of Prelude classes -- ** For unary constructors Eq1(..), eq1, Ord1(..), compare1, Read1(..), readsPrec1, Show1(..), showsPrec1, -- ** For binary constructors Eq2(..), eq2, Ord2(..), compare2, Read2(..), readsPrec2, Show2(..), showsPrec2, -- * Helper functions -- $example readsData, readsUnaryWith, readsBinaryWith, showsUnaryWith, showsBinaryWith, -- ** Obsolete helpers readsUnary, readsUnary1, readsBinary1, showsUnary, showsUnary1, showsBinary1, ) where import Control.Applicative (Const(Const)) import Data.Functor.Identity (Identity(Identity)) import Data.Monoid (mappend) #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif import Text.Show (showListWith) -- | Lifting of the 'Eq' class to unary type constructors. class Eq1 f where -- | Lift an equality test through the type constructor. -- -- The function will usually be applied to an equality function, -- but the more general type ensures that the implementation uses -- it to compare elements of the first container with elements of -- the second. liftEq :: (a -> b -> Bool) -> f a -> f b -> Bool #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Eq1 #endif -- | Lift the standard @('==')@ function through the type constructor. eq1 :: (Eq1 f, Eq a) => f a -> f a -> Bool eq1 = liftEq (==) -- | Lifting of the 'Ord' class to unary type constructors. class (Eq1 f) => Ord1 f where -- | Lift a 'compare' function through the type constructor. -- -- The function will usually be applied to a comparison function, -- but the more general type ensures that the implementation uses -- it to compare elements of the first container with elements of -- the second. liftCompare :: (a -> b -> Ordering) -> f a -> f b -> Ordering #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Ord1 #endif -- | Lift the standard 'compare' function through the type constructor. compare1 :: (Ord1 f, Ord a) => f a -> f a -> Ordering compare1 = liftCompare compare -- | Lifting of the 'Read' class to unary type constructors. class Read1 f where -- | 'readsPrec' function for an application of the type constructor -- based on 'readsPrec' and 'readList' functions for the argument type. liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a) -- | 'readList' function for an application of the type constructor -- based on 'readsPrec' and 'readList' functions for the argument type. -- The default implementation using standard list syntax is correct -- for most types. liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [f a] liftReadList rp rl = readListWith (liftReadsPrec rp rl 0) #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Read1 #endif -- | Read a list (using square brackets and commas), given a function -- for reading elements. readListWith :: ReadS a -> ReadS [a] readListWith rp = readParen False (\r -> [pr | ("[",s) <- lex r, pr <- readl s]) where readl s = [([],t) | ("]",t) <- lex s] ++ [(x:xs,u) | (x,t) <- rp s, (xs,u) <- readl' t] readl' s = [([],t) | ("]",t) <- lex s] ++ [(x:xs,v) | (",",t) <- lex s, (x,u) <- rp t, (xs,v) <- readl' u] -- | Lift the standard 'readsPrec' and 'readList' functions through the -- type constructor. readsPrec1 :: (Read1 f, Read a) => Int -> ReadS (f a) readsPrec1 = liftReadsPrec readsPrec readList -- | Lifting of the 'Show' class to unary type constructors. class Show1 f where -- | 'showsPrec' function for an application of the type constructor -- based on 'showsPrec' and 'showList' functions for the argument type. liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS -- | 'showList' function for an application of the type constructor -- based on 'showsPrec' and 'showList' functions for the argument type. -- The default implementation using standard list syntax is correct -- for most types. liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [f a] -> ShowS liftShowList sp sl = showListWith (liftShowsPrec sp sl 0) #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Show1 #endif -- | Lift the standard 'showsPrec' and 'showList' functions through the -- type constructor. showsPrec1 :: (Show1 f, Show a) => Int -> f a -> ShowS showsPrec1 = liftShowsPrec showsPrec showList -- | Lifting of the 'Eq' class to binary type constructors. class Eq2 f where -- | Lift equality tests through the type constructor. -- -- The function will usually be applied to equality functions, -- but the more general type ensures that the implementation uses -- them to compare elements of the first container with elements of -- the second. liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Eq2 #endif -- | Lift the standard @('==')@ function through the type constructor. eq2 :: (Eq2 f, Eq a, Eq b) => f a b -> f a b -> Bool eq2 = liftEq2 (==) (==) -- | Lifting of the 'Ord' class to binary type constructors. class (Eq2 f) => Ord2 f where -- | Lift 'compare' functions through the type constructor. -- -- The function will usually be applied to comparison functions, -- but the more general type ensures that the implementation uses -- them to compare elements of the first container with elements of -- the second. liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Ord2 #endif -- | Lift the standard 'compare' function through the type constructor. compare2 :: (Ord2 f, Ord a, Ord b) => f a b -> f a b -> Ordering compare2 = liftCompare2 compare compare -- | Lifting of the 'Read' class to binary type constructors. class Read2 f where -- | 'readsPrec' function for an application of the type constructor -- based on 'readsPrec' and 'readList' functions for the argument types. liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b) -- | 'readList' function for an application of the type constructor -- based on 'readsPrec' and 'readList' functions for the argument types. -- The default implementation using standard list syntax is correct -- for most types. liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [f a b] liftReadList2 rp1 rl1 rp2 rl2 = readListWith (liftReadsPrec2 rp1 rl1 rp2 rl2 0) #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Read2 #endif -- | Lift the standard 'readsPrec' function through the type constructor. readsPrec2 :: (Read2 f, Read a, Read b) => Int -> ReadS (f a b) readsPrec2 = liftReadsPrec2 readsPrec readList readsPrec readList -- | Lifting of the 'Show' class to binary type constructors. class Show2 f where -- | 'showsPrec' function for an application of the type constructor -- based on 'showsPrec' and 'showList' functions for the argument types. liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS -- | 'showList' function for an application of the type constructor -- based on 'showsPrec' and 'showList' functions for the argument types. -- The default implementation using standard list syntax is correct -- for most types. liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [f a b] -> ShowS liftShowList2 sp1 sl1 sp2 sl2 = showListWith (liftShowsPrec2 sp1 sl1 sp2 sl2 0) #if __GLASGOW_HASKELL__ >= 708 deriving instance Typeable Show2 #endif -- | Lift the standard 'showsPrec' function through the type constructor. showsPrec2 :: (Show2 f, Show a, Show b) => Int -> f a b -> ShowS showsPrec2 = liftShowsPrec2 showsPrec showList showsPrec showList -- Instances for Prelude type constructors instance Eq1 Maybe where liftEq _ Nothing Nothing = True liftEq _ Nothing (Just _) = False liftEq _ (Just _) Nothing = False liftEq eq (Just x) (Just y) = eq x y instance Ord1 Maybe where liftCompare _ Nothing Nothing = EQ liftCompare _ Nothing (Just _) = LT liftCompare _ (Just _) Nothing = GT liftCompare comp (Just x) (Just y) = comp x y instance Read1 Maybe where liftReadsPrec rp _ d = readParen False (\ r -> [(Nothing,s) | ("Nothing",s) <- lex r]) `mappend` readsData (readsUnaryWith rp "Just" Just) d instance Show1 Maybe where liftShowsPrec _ _ _ Nothing = showString "Nothing" liftShowsPrec sp _ d (Just x) = showsUnaryWith sp "Just" d x instance Eq1 [] where liftEq _ [] [] = True liftEq _ [] (_:_) = False liftEq _ (_:_) [] = False liftEq eq (x:xs) (y:ys) = eq x y && liftEq eq xs ys instance Ord1 [] where liftCompare _ [] [] = EQ liftCompare _ [] (_:_) = LT liftCompare _ (_:_) [] = GT liftCompare comp (x:xs) (y:ys) = comp x y `mappend` liftCompare comp xs ys instance Read1 [] where liftReadsPrec _ rl _ = rl instance Show1 [] where liftShowsPrec _ sl _ = sl instance Eq2 (,) where liftEq2 e1 e2 (x1, y1) (x2, y2) = e1 x1 x2 && e2 y1 y2 instance Ord2 (,) where liftCompare2 comp1 comp2 (x1, y1) (x2, y2) = comp1 x1 x2 `mappend` comp2 y1 y2 instance Read2 (,) where liftReadsPrec2 rp1 _ rp2 _ _ = readParen False $ \ r -> [((x,y), w) | ("(",s) <- lex r, (x,t) <- rp1 0 s, (",",u) <- lex t, (y,v) <- rp2 0 u, (")",w) <- lex v] instance Show2 (,) where liftShowsPrec2 sp1 _ sp2 _ _ (x, y) = showChar '(' . sp1 0 x . showChar ',' . sp2 0 y . showChar ')' instance (Eq a) => Eq1 ((,) a) where liftEq = liftEq2 (==) instance (Ord a) => Ord1 ((,) a) where liftCompare = liftCompare2 compare instance (Read a) => Read1 ((,) a) where liftReadsPrec = liftReadsPrec2 readsPrec readList instance (Show a) => Show1 ((,) a) where liftShowsPrec = liftShowsPrec2 showsPrec showList instance Eq2 Either where liftEq2 e1 _ (Left x) (Left y) = e1 x y liftEq2 _ _ (Left _) (Right _) = False liftEq2 _ _ (Right _) (Left _) = False liftEq2 _ e2 (Right x) (Right y) = e2 x y instance Ord2 Either where liftCompare2 comp1 _ (Left x) (Left y) = comp1 x y liftCompare2 _ _ (Left _) (Right _) = LT liftCompare2 _ _ (Right _) (Left _) = GT liftCompare2 _ comp2 (Right x) (Right y) = comp2 x y instance Read2 Either where liftReadsPrec2 rp1 _ rp2 _ = readsData $ readsUnaryWith rp1 "Left" Left `mappend` readsUnaryWith rp2 "Right" Right instance Show2 Either where liftShowsPrec2 sp1 _ _ _ d (Left x) = showsUnaryWith sp1 "Left" d x liftShowsPrec2 _ _ sp2 _ d (Right x) = showsUnaryWith sp2 "Right" d x instance (Eq a) => Eq1 (Either a) where liftEq = liftEq2 (==) instance (Ord a) => Ord1 (Either a) where liftCompare = liftCompare2 compare instance (Read a) => Read1 (Either a) where liftReadsPrec = liftReadsPrec2 readsPrec readList instance (Show a) => Show1 (Either a) where liftShowsPrec = liftShowsPrec2 showsPrec showList -- Instances for other functors defined in the base package instance Eq1 Identity where liftEq eq (Identity x) (Identity y) = eq x y instance Ord1 Identity where liftCompare comp (Identity x) (Identity y) = comp x y instance Read1 Identity where liftReadsPrec rp _ = readsData $ readsUnaryWith rp "Identity" Identity instance Show1 Identity where liftShowsPrec sp _ d (Identity x) = showsUnaryWith sp "Identity" d x instance Eq2 Const where liftEq2 eq _ (Const x) (Const y) = eq x y instance Ord2 Const where liftCompare2 comp _ (Const x) (Const y) = comp x y instance Read2 Const where liftReadsPrec2 rp _ _ _ = readsData $ readsUnaryWith rp "Const" Const instance Show2 Const where liftShowsPrec2 sp _ _ _ d (Const x) = showsUnaryWith sp "Const" d x instance (Eq a) => Eq1 (Const a) where liftEq = liftEq2 (==) instance (Ord a) => Ord1 (Const a) where liftCompare = liftCompare2 compare instance (Read a) => Read1 (Const a) where liftReadsPrec = liftReadsPrec2 readsPrec readList instance (Show a) => Show1 (Const a) where liftShowsPrec = liftShowsPrec2 showsPrec showList -- Building blocks -- | @'readsData' p d@ is a parser for datatypes where each alternative -- begins with a data constructor. It parses the constructor and -- passes it to @p@. Parsers for various constructors can be constructed -- with 'readsUnary', 'readsUnary1' and 'readsBinary1', and combined with -- @mappend@ from the @Monoid@ class. readsData :: (String -> ReadS a) -> Int -> ReadS a readsData reader d = readParen (d > 10) $ \ r -> [res | (kw,s) <- lex r, res <- reader kw s] -- | @'readsUnaryWith' rp n c n'@ matches the name of a unary data constructor -- and then parses its argument using @rp@. readsUnaryWith :: (Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t readsUnaryWith rp name cons kw s = [(cons x,t) | kw == name, (x,t) <- rp 11 s] -- | @'readsBinaryWith' rp1 rp2 n c n'@ matches the name of a binary -- data constructor and then parses its arguments using @rp1@ and @rp2@ -- respectively. readsBinaryWith :: (Int -> ReadS a) -> (Int -> ReadS b) -> String -> (a -> b -> t) -> String -> ReadS t readsBinaryWith rp1 rp2 name cons kw s = [(cons x y,u) | kw == name, (x,t) <- rp1 11 s, (y,u) <- rp2 11 t] -- | @'showsUnaryWith' sp n d x@ produces the string representation of a -- unary data constructor with name @n@ and argument @x@, in precedence -- context @d@. showsUnaryWith :: (Int -> a -> ShowS) -> String -> Int -> a -> ShowS showsUnaryWith sp name d x = showParen (d > 10) $ showString name . showChar ' ' . sp 11 x -- | @'showsBinaryWith' sp1 sp2 n d x y@ produces the string -- representation of a binary data constructor with name @n@ and arguments -- @x@ and @y@, in precedence context @d@. showsBinaryWith :: (Int -> a -> ShowS) -> (Int -> b -> ShowS) -> String -> Int -> a -> b -> ShowS showsBinaryWith sp1 sp2 name d x y = showParen (d > 10) $ showString name . showChar ' ' . sp1 11 x . showChar ' ' . sp2 11 y -- Obsolete building blocks -- | @'readsUnary' n c n'@ matches the name of a unary data constructor -- and then parses its argument using 'readsPrec'. {-# DEPRECATED readsUnary "Use readsUnaryWith to define liftReadsPrec" #-} readsUnary :: (Read a) => String -> (a -> t) -> String -> ReadS t readsUnary name cons kw s = [(cons x,t) | kw == name, (x,t) <- readsPrec 11 s] -- | @'readsUnary1' n c n'@ matches the name of a unary data constructor -- and then parses its argument using 'readsPrec1'. {-# DEPRECATED readsUnary1 "Use readsUnaryWith to define liftReadsPrec" #-} readsUnary1 :: (Read1 f, Read a) => String -> (f a -> t) -> String -> ReadS t readsUnary1 name cons kw s = [(cons x,t) | kw == name, (x,t) <- readsPrec1 11 s] -- | @'readsBinary1' n c n'@ matches the name of a binary data constructor -- and then parses its arguments using 'readsPrec1'. {-# DEPRECATED readsBinary1 "Use readsBinaryWith to define liftReadsPrec" #-} readsBinary1 :: (Read1 f, Read1 g, Read a) => String -> (f a -> g a -> t) -> String -> ReadS t readsBinary1 name cons kw s = [(cons x y,u) | kw == name, (x,t) <- readsPrec1 11 s, (y,u) <- readsPrec1 11 t] -- | @'showsUnary' n d x@ produces the string representation of a unary data -- constructor with name @n@ and argument @x@, in precedence context @d@. {-# DEPRECATED showsUnary "Use showsUnaryWith to define liftShowsPrec" #-} showsUnary :: (Show a) => String -> Int -> a -> ShowS showsUnary name d x = showParen (d > 10) $ showString name . showChar ' ' . showsPrec 11 x -- | @'showsUnary1' n d x@ produces the string representation of a unary data -- constructor with name @n@ and argument @x@, in precedence context @d@. {-# DEPRECATED showsUnary1 "Use showsUnaryWith to define liftShowsPrec" #-} showsUnary1 :: (Show1 f, Show a) => String -> Int -> f a -> ShowS showsUnary1 name d x = showParen (d > 10) $ showString name . showChar ' ' . showsPrec1 11 x -- | @'showsBinary1' n d x y@ produces the string representation of a binary -- data constructor with name @n@ and arguments @x@ and @y@, in precedence -- context @d@. {-# DEPRECATED showsBinary1 "Use showsBinaryWith to define liftShowsPrec" #-} showsBinary1 :: (Show1 f, Show1 g, Show a) => String -> Int -> f a -> g a -> ShowS showsBinary1 name d x y = showParen (d > 10) $ showString name . showChar ' ' . showsPrec1 11 x . showChar ' ' . showsPrec1 11 y {- $example These functions can be used to assemble 'Read' and 'Show' instances for new algebraic types. For example, given the definition > data T f a = Zero a | One (f a) | Two a (f a) a standard 'Read1' instance may be defined as > instance (Read1 f) => Read1 (T f) where > liftReadsPrec rp rl = readsData $ > readsUnaryWith rp "Zero" Zero `mappend` > readsUnaryWith (liftReadsPrec rp rl) "One" One `mappend` > readsBinaryWith rp (liftReadsPrec rp rl) "Two" Two and the corresponding 'Show1' instance as > instance (Show1 f) => Show1 (T f) where > liftShowsPrec sp _ d (Zero x) = > showsUnaryWith sp "Zero" d x > liftShowsPrec sp sl d (One x) = > showsUnaryWith (liftShowsPrec sp sl) "One" d x > liftShowsPrec sp sl d (Two x y) = > showsBinaryWith sp (liftShowsPrec sp sl) "Two" d x y -}